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Abstract. We present a novel video retrieval system that accepts annotated free-
hand sketches as queries. Existing sketch based video retrieval (SBVR) systems
enable the appearance and movements of objects to be searched naturally through
pictorial representations. Whilst visually expressive, such systems present an im-
precise vehicle for conveying the semantics (e.g. object types) within a scene.
Our contribution is to fuse the semantic richness of text with the expressivity of
sketch, to create a hybrid ‘semantic sketch’ based video retrieval system. Trajec-
tory extraction and clustering are applied to pre-process each clip into a video
object representation that we augment with object classification and colour infor-
mation. The result is a system capable of searching videos based on the desired
colour, motion path, and semantic labels of the objects present. We evaluate the
performance of our system over the TSF dataset of broadcast sports footage.

1 Introduction

Text keywords are the dominant query mechanism for multimedia search, due to their
expressivity and compactness in specifying the semantic content (e.g. car, horse) de-
sired within a scene. However, keywords lack the descriptive power to concisely and
accurately convey the visual appearance, position and motion of objects. Querying by
Visual Example (QVE) offers a solution, yet most video QVE techniques require a
photo-real query (e.g. image [33], or video [5]) and so are unsuitable in cases where
exemplar footage is absent. Free-hand sketch is a complementary query mechanism for
specifying the appearance and motion of multimedia assets, and has recently been ap-
plied to video retrieval [8, 15]. However the throw-away act of sketch, combined with
limited artistic skill of non-expert users, can make unambiguous depiction of objects
challenging. Such ambiguity limits the size and diversity of the dataset that can be
queried purely by pictorial means. The contribution of this paper is to fuse the orthogo-
nal query methods of sketch and fext — for the first time presenting a QVE system for
searching video collections using fextually annotated sketch queries.

Our system accepts a colour free-hand sketched query annotated with text labels
indicating object classification (semantics), and motion cues (arrows) that indicate the
approximate trajectory of the desired object. We focus upon these cues to assess rel-
evance, following recent studies [9, 8] that observe users to draw upon their episodic
memory during sketch recall — resulting in sketches exhibiting low spatial and tem-
poral fidelity [34]. Users typically recall the names of a few salient objects in a scene,



and their approximate trajectories, rather than their detailed appearance (e.g. shape).
Object appearance tends to be depicted coarsely, using a limited yet approximately cor-
rect colour palette. Therefore, although users naturally depict an object’s shape within
a sketch, we do not currently use shape information to influence the type of object to
retrieve. Rather, our contribution is to combine spatio-temporal position information in
the sketch with colour, and the semantic tags associated with the object to create a more
scalable solution than that offered by shape alone [8, 15].

We represent video as a set of video objects, identified during video ingestion by
motion segmentation based on an unsupervised clustering of sparse SIFT feature tracks.
A super-pixel representation of video frames is used to aggregate colour information
local to each video object. An object class distribution is also computed local to each
video object, based on a per-pixel labelling of frames via a random-forest classifier.
Thus each spatio-temporal video object is accompanied by colour, semantic and mo-
tion trajectory data. At query-time sketched trajectories are matched to the trajectories
of video objects using an adapted Levenshtein (edit) distance measure, alongside a mea-
surement of similarity between the colour and semantic distributions of the query and
candidate objects.

We describe the extraction and matching of the video object representation in Sec. 3
and 4 respectively, evaluating over a subset of the public TSF dataset in Sec.5.

1.1 Related work

Sketch based retrieval (SBR) of visual media dates back to the nineties, and the devel-
opment of image retrieval systems where queries comprised sketched blobs of colour
and texture [13, 18, 30]. Image retrieval using sketched line-art depictions has been ad-
dressed by exploring the relationship between image edges and sketched lines. Matusiak
et al. [27] proposed curvature scale-space [28] as a depiction invariant descriptor. Affine
invariant contour representations for SBR were also explored by [17]. The relationship
between edge detail and sketches was made explicit by Del Bimbo and Pala [10] where
an deformable model derived from the sketch was fitted over image edges via non-linear
optimization. More scalable solutions to image SBR have been proposed via the Struc-
ture Tensor[11], and the combination of Gradient-Field HoG descriptor and the Bag of
Visual Words (BoVW) framework [16] initially proposed for QVE using photographic
queries.

Although such sketch based image retrieval (SBIR) may be extended to video through
key-frame extraction, motion also plays an important role within video content. A num-
ber of approaches [14,2,23,3, 1] have explored the description of object trajectory
through sketch, but neglect the appearance and semantic properties of the video con-
tent. Collomosse et al. combined sketched shape, colour and motion cue through free-
hand storyboard sketches [§] — solving an inference problem to assign super-pixels in
video to sketched objects at query-time. The expense of the inference step motivated
Hu et al. to consider alternative approaches to matching storyboard sketches [15] using
a trellis-based edit distance.

Our system directly builds upon [15], also adopting a edit-distance measure to
match tokenized motion trajectories. However our system is unique in considering not
only motion and colour, but also the semantic labelling of content within the video.
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Fig. 1. Video pre-processing pipeline. Space-time video objects are first segmented from sparse
tracked feature correspondences. Medial axis of each object’s point cloud is extracted and aug-
mented with colour and semantic label distributions obtained from local super-pixels.

This overcomes the scalability limitations inherent in the basic appearance features (e.g.
colour, shape) considered in recent work [8, 15], and inherent in the medium of sketch,
by relying instead on a user-annotated semantic labelling of sketched objects.

The consideration of semantics in SBR is currently sparsely researched. Semantic
SBIR systems proposed by Liu et al. [24] and Wang et al. [35,6] demonstrate how
annotated examplar images can be exploited to retrieve images. Both systems used ex-
ample images from a database of images (Mindfinder — found by interactive keyword
search) to construct the query either using boxes or freehand shapes to depict the shape
of the object. These approaches showed how semantic based retrieval is useful in adding
spatial information to the user query, but are not suitable to be extended to video. To
the best of our knowledge, the extension of semantic sketch to video has not been pre-
viously explored in literature.

2 System Overview

Our system parses videos upon ingestion to extract a set of video objects, identified
as tracked clouds of sparse feature points (SIFT keypoints) undergoing self-consistent
spatio-temporal motion. This motion segmentation step is performed via Affinity Prop-
agation, as outlined in Sec. 3.1. The resulting video objects are analysed further to
extract motion, colour and semantic labelling information. Motion trajectory is identi-
fied by a space-time curve representing the medial axis of motion, and sampling regular
intervals along this curve to encode a series of ‘tokens’ that are later matched to the
sketched curve using a modified Levenshtein (edit) distance. Mean-shift segmentation
is applied to each video frame to yield a super-pixel representation, under which we can
compute a colour distribution as later described in Sec. 3.2. A per-pixel semantic label
is assigned to each video frame using a random-forest based labelling algorithm [31].
Thus the image pixels local to each tracked feature point within a video object group-
ing contributes to a colour and semantic distribution for that object. These three com-
ponents (motion, colour, semantics) comprise the video object representation that we
match against sketches at query-time (Sec. 4). Fig. 1 outlines the sequence of these
pre-processing steps.



3 Video feature extraction

Upon addition of a new video to the dataset, we segment each video into clips using
shot-detection [37]. Each clip is then processed to identify objects in the video that
exhibit coherent motion relative to the background. Color, motion and semantic infor-
mation is then extracted for each object.

3.1 Motion segmentation and trajectory extraction

Extracting and clustering motion trajectories is crucial for video processing and has
been used for event analysis [29, 19], pedestrian counting [2] and video retrieval [15]. In
this paper, we adopt an unsupervised motion clustering method to group the trajectories,
generated by SIFT feature tracking, into different categories. The dominant trajectory
of each motion category is represented with a piece-wise cubic 3-spline.

Trajectory extraction: SIFT feature tracking has been used for video stabilization [4],
object recognition and tracking [26,36], as well as video retrieval [15]. In this paper
we use SIFT keypoints matching to compensate the camera motion and generate the
individual trajectories.

SIFT keypoints are detected on each frame and matched between each two adjacent
frames. We iteratively correspond descriptors using the L' norm, the correspondences
where the distance ratio of the best two matches falls below tolerance are disregarded as
in [25]. Keypoints within the TV logo areas are not considered, and due to the constant
location of such logos in our dataset (TSF [8]), they are trivially masked out. The inter-
frame homography is estimated via MAPSAC using the keypoint correspondences. The
locations of SIFT keypoints are transformed using the inverse homography to effect
compensate for camera motion during the clip. Keypoints moving below a threshold
velocity are discarded as unwanted background detail.

The correspondences of keypoints after camera motion compensation generate a
set of individual trajectories. In order to filter and remove erroneous correspondences,
we delete and interpolate the position keypoints where the inter-frame displacement
deviates from the local average. Trajectories are fragmented into separate individual
trajectories from the point of sudden changes of velocity [15].

Trajectory clustering: Tracklet representations, such as our SIFT trajectories, are fre-
quently adopted as a basis for motion clustering in structure-from-motion applications
[2,23, 3, 1], though often at the expense of imposing a simplifying motion model (e.g.
near-linear motion [15]). In [15] we construct a 5D feature space from the mean space-
time location (z,y,t) and velocity (Ax, Ay) of each trajectory. However, despite the
simplicity of individual trajectories, a grouping of trajectories can encode non-linear
motion. In this paper, we perform this grouping via Affinity Propagation clustering as
follows.

Given the trajectory set, we compute the affinity of each trajectory pair and represent
each as a node in an affinity graph. Each edge of the graph is weighted in proportional
the affinity between the two nodes. Only trajectory pairs that share at least one common



frame are considered to compute the affinity; the similarity between trajectories that do
not share a common frame is set to be 0.

Let A and B be two trajectories sharing at least one common frame. The dissim-
ilarity between A and B is defined as the distance of these two trajectories at a time
instance where they are the most dissimilar:

d*(A, B) = max;d?(A, B). (1)

d?(A, B) is the distance of A and B at the particular time instant ¢:
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where dg, (A, B) is the average spatial distance of A and B in the common time win-
dow; u; := xy43 — x4 and vy 1= Y443 — Yy, measures the motion aggregation of the two
trajectories over 3 frames; o, = mingeqa gy Xy 0(@f, 4, Yy, t+ ).

The similarity of trajectory A and B is then computed as:

sim(A, B) = exp(—kd?*(A, B)). 3)

where in our experiments, constant £ = 0.1. Having computed the affinity matrix,
we apply the Affinity Propagation (AP) algorithm [12] to group the trajectories into
different motion categories. In contrast to k-means clustering, AP requires only the
similarity between trajectories as input, and does not require prior knowledge of the
number of the clusters. Rather, AP considers all data points as potential exemplars and
iteratively exchanges messages between data points until the corresponding clusters
gradually emerges.

Motion representation: We extract a representative medial axis from each clustered
component by approximating its global trajectory with a piece-wise cubic (3-spline. The
solution is unavailable in closed-form due to the typical presence of outliers and piece-
wise modelling of complex paths. We therefore fit the spline using RANSAC to select
a set of control points for the 3-spline from the set of keypoints in the corresponding
cluster. One keypoint is selected at random from each time instant spanned by cluster,
to form the set of control points. The fitness criterion for a putative 3-spline is derived
from a snake [20] energy term, which we seek to minimize:
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where B(s) is the arc-length parameterised [3-spline, and Py, ¢t = {0..7'} is the
subset of keypoints within the cluster at time ¢. We set « = 0.8, 3 = 0.2 to promote
smooth fitting of the motion path.



3.2 Color feature extraction

After motion clustering, each group of individual trajectories represents motion from
one moving object which we term a video object. However, the sparsely detected SIFT
keypoints within the video object typically exhibit insufficient pixel coverage to sample
the colour appearance information of the video object.

We therefore segment each video frame into super-pixels of homogeneous color, us-
ing mean-shift [7] algorithm. The color of each keypoint along the trajectory is deemed
as the mean color of the underlying region, and a weighted contribution is made to the
histogram proportional based on the area of the region and the number of times that
region been touched by trajectories from the according group.

The color distribution histogram is computed on all the keypoints along the trajec-
tories of that category.

3.3 Semantic labelling

Pixelwise Semantic Segmentation has started to gain attention in recent years, ap-
proaches such as TextonBoost[31] and ALE[21] provide a accurate way of segmenting
images. These approaches suffer from the computation of complex filter banks and as-
signment at test time, and the addition of K-Means at train time. An alternative to these
approaches Semantic Texton Forests (STF)[32] used Extremely Randomised Decision
Forests to classify pixels, these ensembles of decision trees are fast to train and test
their inherent random approach allows them to be flexible to a variety of applications.
In evaluation the STF computational performance makes it an attractive approach for
semantically segmenting videos allowing for database scalability, the alternative texton
based approaches are generally too slow to handle large datasets.

The STF approach is composed of two components, training of an ensemble of ran-
dom decision trees. These trees are trained based on CIELab colour value differences
within a window around the training point. The comparisons of values are based on a
random comparison function, these can be addition, subtraction, absolute difference for
example. The second component of this approach is a global image classification, this
trains a OneVsOthers SVM other each of the classes, the approach uses a unique ker-
nel based on Pyramid Matching Kernel(PMK). The PMK is adapted from the random
decision forest based on node counts of the ensemble classified image, this adds some
spatial consistency of class adjacent class context within images.

We apply the STF classifier to label the pixels in each the video frame as being in
one of a pre-trained set of categories. In our experiments we train STF over twelve cate-
gories — corresponding to object classes with the TSF dataset, e.g. horse, grass, person,
car. We count the frequency of label occurrence over all keypoints present within the
spatio-temporal extend of the video object. The resulting frequency histogram is nor-
malized via division by the number of keypoints, yielding a probability distribution for
the video object’s semantic label over the potential object categories.

4 Matching the Annotated Sketch

The basic unit of retrieval in our system is the video object, parsed via the process
of Sec. 3. Video retrieval proceeds by independently estimating the similarity of each



video object v; € V to the annotated sketch @ supplied by the user. This provides both
a video and temporal window containing relevant content, which can be presented in a
ranked list to the user.

The probability of object v; corresponding to a given sketch query is proportional
to a product of three orthogonal cues:

P(VIQ) o argmax [sime (v:) X simar(vs) X sims(v;)]. ™)

where simc, simps and simg denote the color, motion and semantic similarity of the
it" video volume to the query sketch Q respectively — as defined below.

4.1 Motion similarity (simps)

We follow the observations of [9], who observe that users depict object motion against a
static background (the drawing canvas) regardless of any global camera motion present
in the scene. This leads to a mapping between the sketch canvas and the camera-motion
compensated frame derived from the inter-frame homographies computed within the
video. Introducing a further assumption, we consider the sketched trajectory to depict
the entirety of a video object’s motion. We are then able to construct a space-time
(x,y,t) trajectory from the sketched motion path — with time (t) spanning the temporal
extent of the video object being matched, and (x,y) spanning the total camera panorama
covered during that time.

The problem of matching the sketched motion path is thus reduced the problem of
assessing the similarity of two space-time trajectories; that derived from the sketch, and
that derived from the medial axis (S—spline) fitted to the video object’s keypoints in
subsec. 3.1.

Tokenization: We match the sketched motion trajectory to that of the video object by
considering the path as a sequence of discrete movements, which we achieve by sam-
pling the trajectory at regular arc-length intervals. In our experiments we sample ten
intervals. A codebook of space-time moves is generated, and each trajectory segment
assigned to a token in the codebook. The two strings are compared efficiently using
the Levenshtein (edit) distance [22]; the minimal cost of operations required to trans-
form one token sequence to the other. In our system we use the classical Levenshtein
distance comprising insertion, deletion and substitution operators. The cost of insertion
and deletion are defined as unity (i.e. high), with the substitution cost defined as the
probability of two motion token being similar (derived from their space-time position
and angle). The use of an edit distance measure enables two similar trajectories that ex-
hibit temporally misaligned segments (due to inaccuracies in the sketch) being matched
with low cost.

4.2 Colour similarity (sim¢)

Colour similarity is measured by comparing the non-parametric colour distribution of
the sketched object with that of the video object being compared. The colour distribu-
tion is determined by computing a normalised frequency histogram from the colours
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Fig. 2. Motion stroke queries and their top 10 returned results.

of pixels comprising the sketch. The set of colours comprising the histogram bins are
derived from the discrete 16 colour palette available to the user during sketching; a sim-
ilar palette is used when extracting the colour distribution from video objects with pixel
colours conformed to this palette via nearest-neighbor assignment in CIELab space.
The L? norm distance is used to compute the distance between two color histograms.

4.3 Semantic similarity (stmg)

Our system enables the user to tag objects with a single object class, creating a class
distribution for the sketched object with all contribution assigned to a single bin (object
category). This histogram is directly compared with that of the video object, using the
L? norm distance.

5 Experiments and Discussion

We evaluate our system over a subset of the TSF dataset, composed of 71 horse racing
and 71 snow skating clips. For semantic labeling of the video frames, we define eight
different semantic categories: person, horse, grass, snow, stands, plants, sky and void —
although the void class is ignored for training. We manually label 143 frames from 12
video clips as training set, to classify the rest video frames.

Our system is tested in four different ways: use motion information alone as query;
motion with color; motion with semantics, motion together with color and semantic
information as queries. The example queries and their top 10 returned results are shown
in Fig. 2 - Fig. 5 respectively. The positive results are highlighted in green and negative
results are highlighted in red.

In Fig. 2 we demonstrate the effectiveness of our motion extraction and matching
approach. The results over the selection of queries available for this dataset produce
a Mean Average Precision(MAP) of 38.6%. Within the combination of motion and
colour as queries as shown in Fig. 3, there is no shape information encoded therefore



Fig. 5. Semantic query sketches and their top 10 returned results.

objects despite there depiction are referred to abstractly as a colour blob. These results
demonstrate MAP of 42.7%.

The fusion of annotated class and motion as shown in Fig. 4, achieves a MAP of
75.85%. This improvement in contrast to motion alone demonstrates the advantages of
annotated class as a facet of information.

When using the mix of all the different information sources as shown in Fig. 5, We
achieve a MAP of 51.22%. The reduction in MAP is due to two main reasons, the dif-
ficulty in describing a feature points colour accurarly — generally in most scenarios the
horse has a variety of colours on them even with the mean-shift filtering there are still
regions such as the leg of the rider that are difficult for both the semantic segmentation
and the colour description to deal with. Also with the amalgamation of all the different
facets of information reduces the possible accurate results in the dataset down making
it very difficult to get an accurate result.

Average Precision Recall curves of the four evaluated systems are ploted in the
left of Fig. 6. From the curves we can see that by adding semantic information into
the color, and motion query can significantly improve the performance of the retrieval



10

#verage Precision Recall Precision Recall curves of each query shown in Fig5

Average Precision
Average Precision

0 01 0z 03 04 05 06 07 08 03 1 0 01 02 03 04 05 06 07 08 03 1
Average Recall average Recall

Fig. 6. (left)Average Precision Recall curves of using motion (black curve), motion with color
(red curve), motion with semantics (blue curve), motion with color and semantics together (green
curve) based retrieval. (right) Precision Recall curves of the three queries shown in Fig. 4. The
curve for the query on the top is shown in red; the middle is shown in green; and the bottom one
is shown in blue.

system. The figure on the right side of Fig. 6 show the precision recall curve of each of
the three queries in Fig. 5.

6 Conclusion

We have presented a video retrieval system driven by annotated sketched queries. Salient
objects are identified within video through unsupervised clustering of SIFT keypoint
trajectories in a camera-motion compensated frame. Each object is analysed to develop
an augmented object description comprising data on space-time locus (spatial position
and motion path), colour and object category. The motion is derived from a S—spline
robustly fitted in space-time to keypoints comprising the object. Although semantic
sketch based retrieval has been recently applied to images [35, 6], our system is the first
to explore the use of semantic (annotated) sketches for video retrieval. We have demon-
strated improved retrieval performance through the integration of semantics, over pre-
vious sketch based video retrieval techniques using colour and motion alone [15].

Having incorporated multiple orthogonal cues into a video retrieval system, a nat-
ural direction for future work is explore the relative weightings of those cues. Such
weightings seemingly cannot be prescribed in advance; a user sketching a red blob la-
belled “car” travelling right, may assign greater worth to red cars travelling left — or
to yellow cars travelling right. Interactive relevance feedback, enabling re-weighting of
the terms of eq. 7 seems a promising approach to resolving this ambiguity behind a
user’s intention.
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