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ABSTRACT

We describe a novel system for synthesising video chore-
ography using sketched visual storyboards comprising hu-
man poses (stick men) and action labels. First, we de-
scribe an algorithm for searching archival dance footage us-
ing sketched pose. We match using an implicit representa-
tion of pose parsed from a mix of challenging low and high
fidelity footage. In a training pre-process we learn a mapping
between a set of exemplar sketches and corresponding pose
representations parsed from the video, which are general-
ized at query-time to enable retrieval over previously unseen
frames, and over additional unseen videos. Second, we de-
scribe how a storyboard of sketched poses, interspersed with
labels indicating connecting actions, may be used to drive
the synthesis of novel video choreography from the archival
footage.

We demonstrate both our retrieval and synthesis algo-
rithms over both low fidelity PAL footage from the UK
Digital Dance Archives (DDA) repository of contemporary
dance, circa 1970, and over higher-definition studio captured
footage.

Categories and Subject Descriptors

H.4 [Content Analysis and Indexing]: Miscellaneous;
D.2.8 [Info. Search and Retrieval]: Metrics—Pose Esti-
mation, Image Retrieval, Video Synthesis

1. INTRODUCTION

The performing arts are increasingly turning to digital
archives for dissemination. Dance in particular has launched
several major online archives of historic dance footage, in-
cluding the EU GAMA and UK Digital Dance Archives
(DDA). Existing solutions for searching this footage rely on
text, which focuses on archival metadata rather than the
choreography itself.

In this paper we describe a novel system for searching
dance video content directly, using free-hand sketches of hu-
man pose — the essential element of choreography. More-
over, we enable the synthesis of novel choreographic video
sequences from a sequence (or ‘storyboard’) of such sketches.
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The novel choreography is composed using fragments of orig-
inal archive footage seamlessly combined to match the inten-
tion expressed in the sketched storyboard.

Our system accepts a free-hand drawing of a stick-man in
the desired pose as input, and searches through footage to
retrieve frames containing similar poses. This is a challeng-
ing task, as archival dance footage is frequently low fidelity
with poor definition and contrast bleaching due to transfers
between analogue media over the years. Such footage has
recently been shown [27] to frustrate the automated parsing
of an explicit estimate of pose or labelling of limbs using
state of the art techniques [1, 9, 32].

Our first contribution is a technique for matching such
footage to sketched stick-men. To the best of our knowledge
we are the first to attempt this in 2D footage, and without
relying upon explicit limb pose estimation within content.

Our second contribution is a technique for synthesizing
new video-realistic choreographic footage from a sequence
of sketched stick-men. Synthesis is performed by seamlessly
stitching together video fragments from archival footage to
produce new choreographic sequences that follow the poses
(and interspersed actions) specified by a user sketched story-
board. This novel interactive authoring tool enables users to
create choreography along the theme of past work, directed
using a novel set of pose and action transition requirements.
In many cases the creation of such sequences would be im-
possible due to unavailability of historic costumes or the
performers depicted in the footage.

2. RELATED WORK

Our work is aligned with prior research exploring the sketch
based retrieval (SBR) of images and video. The early SBR
systems of the nineties performed image retrieval using query
sketches comprising blobs of color texture [20]. Sketched
line-art depictions were later matched against edge contours
extracted from clip-art vector graphics [30], or from images
via edge detection. The latter were enabled by global image
descriptors such as Curvature Scale Space [25] and edge ori-
entation histograms [10] offering fast matching. Optimiza-
tion approaches that fit sketched contours to edges within
the image have also been explored [8], offering higher ac-
curacy in the presence of clutter but with a time complex-
ity that hinders scalability. Recently, SBR has been revis-
ited using local image descriptors in a Bag of Visual Words
(BoVW) framework. A modified version of the Histogram of
Gradient descriptor (GF-HOG) was proposed by Hu et al.
[17] to adapt the BoVW pipeline to SBR. An adaptation to
the HOG sampling strategy for BoVW was proposed by Eitz
et al. [11]. Wang et al. described a complementary approach
to scalable SBR using an inverted index of local edgels [5].
Sketches of shape have been augmented with additional in-
formation such as motion cues to enable matching of moving



shapes to video [6]. Sketches annotated with semantic labels
have been proposed for hybrid text-sketch matching [24, 18].

These modern approaches offer robust solutions to the
SBR problem of shape match for general objects, but lack
the power to clearly discriminate between the different poses
within a dance performance. Although visual search using
human pose has been explored within the context of pho-
tographs [13, 27], or using natural interfaces such as Kinect
[21], the topic has not been explored in image based SBR.
We tackle the problem of sketch based pose search by parsing
the sketch into a parameterized skeleton (stick man) repre-
sentation [14], and learning the mapping between that pa-
rameterized space and the space of appearance descriptors
extracted from the video.

Our concatenation approach to synthesizing video chore-
ography falls squarely within the domain of example-based
synthesis (EBS). EBS was introduced in speech to allow re-
production of natural speech from a corpus of recorded spo-
ken audio fragments [19]. Subsequently EBS was exploited
in computer graphics to reuse and modify video sequences.
Bregler et al. [3] introduced video rewrite to create a novel
video of a person speaking by retrieving and concatenating
mouth images from a training via using audio cues. Simi-
larly, [12] presented an audio-driven visual-speech animation
system which also parameterizes the mouth images, enabling
generalization beyond captured video frames using a mor-
phable model. Schédl et al’s video textures [29] extended
video EBS to be driven, for the first time by visual cues.
They demonstrated the synthesis of perpetual videos by
copying and re-arranging frames from a single source video.
The video is modelled as a Markov process with each state
corresponding to a single frame and the probabilities corre-
sponding to the likelihood of transitions from one frame to
another. These likelihoods are computed as frame-to-frame
image similarities over a short temporal window.

In related work within the 3D graphics domain, Kovar
et al. [22] construct a directed graph on 3D skeletal Motion
Capture sequences, referred to as a Motion Graphs, where
edges correspond to segments of motion and nodes identify
connections between them. Motion segments include orig-
inal motions and transition motions generated by blending
segments together. Distances between pairs of frames are
computed in pose space to determine if a transition is pos-
sible, decided using a fixed similarity threshold. Synthesis
is performed by finding an optimal graph walk that satisfies
user-defined constraints.

Our work for the first time combines both video textures,
and Motion Graphs, driving path optimization over the lat-
ter using key framed poses identified using our SBR pose
search. Uniquely, our choice of path is also constrained by
user specified actions linking the sketched poses.

3. FEATURE EXTRACTION

We first outline how representations of human pose are
extracted from the sketch query (Sec. 3.1) and video frames
(Sec. 3.2). The representations are matched in Sec. 4.3.

3.1 Sketch Parsing

The system accepts a sequence of free-hand sketched strokes
as query, captured via a web interface (see video, Sec. 6).
We use a set of heuristics to label strokes to components of
a stick-man, following the approach of Fonseca et al. [14].
Briefly, candidates for the torso stroke are prioritized via a
voting system that combines measures of stroke intersection,
center of mass, and similarity to a straight line. The head
stroke is identified by the finding the stroke most similar to
an ellipse. To label arms and legs the intersection point that
unifies the arms or legs is identified. We enable the user to
manipulate the left-right orientation of the stick-man (e.g.

whether the figure faces toward or away from the page) as
this information is absent in a sketch.

Having fitted a stick-man to the sketch, the joint angles of
the articulated skeleton are converted into a pose descriptor
S € R0 as follows. Interpreting the skeleton as a hierarchy
with torso at root, the angle 6; that the it" stroke makes
with its parent is converted into a vector v;:

cos(0; + €) — cos(0;
Vi= singﬁi i eg — singﬂig )

where e is a small constant. The descriptor S = {vd v{..v}}
is formed from the nine joints in the skeleton (i = {1..9}),
with ¢ = 0 indicating the angle that the torso makes with
the vertical. This construction removes the disjoint at 6; =
0, 27.

3.2 Video Descriptor Extraction

We extract a pose descriptor for each video frame in an
offline pre-process. Each descriptor is derived from a binary
mask representing the shape (silhouette) of the dance per-
former in the frame. We opt to compute shape descriptors of
this kind, rather than perform interest point detection, due
to the noise and paucity of stable sparse features exhibited
in our low fidelity archive footage.

3.2.1 Silhouette Extraction

Although performers appear distinct in low resolution
footage, the presence of soft edges and changing intensity
gradients from stage illumination precludes the use of sim-
ple heuristics to produce the silhouette (such as background
subtraction) that may succeed on higher resolution footage.
Thus our first step is to learn, for each video, an appearance
model for texture that is likely to represent the performer.
We apply a bank of Gaussian filters (Textons) to all frames
in the video, and apply the standard Bag of Words model
using a codebook size k = 100 . Each pixel is thus assigned
to one of k codewords, and a texton descriptor can be com-
puted as the normalized histogram of codeword occurrence
within a given window. We train a support vector machine
(SVM) with positive and negative examples of performer
texture using textons computed within 10 x 10 windows.

For training examples applying an adaptive threshold to
an Itti and Koch image saliency field [15] is often sufficient
to extract a good silhouette of a performer in simple, un-
cluttered conditions. We use this process to bootstrap our
more robust texton silhouette extraction method; providing
positive and negative exemplars.

Given the trained SVM, we extract the silhouette from a
frame by predicting the probability of each pixel being fore-
ground (performer) or background using its texton descrip-
tor. We enhance the spatial coherence of this probability
map by using a binary graph-cut [2], with the probabilities
forming the unary (data) term and a standard edge preserv-
ing pair-wise term commonly used in image segmentation
algorithms e.g. GrabCut [28]. Texture alone can be in-
sufficient to discriminate the performer from background in
overexposed footage. We therefore extend the unary term
to incorporate the probability of the object being moving
foreground, obtained by differencing neighbouring frames.

3.2.2  Descriptor Formation

Having computed the binary masks (silhouettes) of the
performer, we form a pose descriptor using a simplified ver-
sion of the Histogram of Oriented Gradients (HOG) descrip-
tor [7] computed over the bounding box of the mask. A
2 x 2 grid (Fig 1) is centred upon the bounding box and a
histogram computed independently within each cell, using 8
angular bins per cell and resulting in a 32 dimensional shape
descriptor. Hereafter we refer to this space as D € ®32. The
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Figure 1: Video descriptor extraction. Source Image 1la;,
1b;; Saliency Estimation, 1c;; Texton FG/BG Classification,
1d;; Incorporating motion cues, le;; Graph cut yielding sil-
houette. Resulting in a HOG descriptor computed per cell
of a2 x 2 grid

processing steps of subsection 3.2 are illustrated in Fig 1.

4. CHOREOGRAPHY BY SKETCH

We learn a non-parametric mapping between the query
space (S) and pose descriptor space (D), using a set of
around 230 manually marked up training poses. Valid poses
lie upon manifolds in both spaces, each of which is sam-
pled by the training process (Sec. 4.1). A graph strategy
is used to compute similarity between a query and candi-
date video frame (pose) by approximating geodesic distance
across these manifolds (Sec 4.2). This similarity score is
used to rank each video frame in the database for relevance
to a given query, underpinning both our pose retrieval (Sec
4.3) and video synthesis (Sec 4.4) applications.

4.1 Video manifold construction

The Quality Thresholding (QT) clustering algorithm[16]
is used to identify the set of training poses from training
footage by clustering data points (frames) within our de-
scriptor space (Sec. 3.2.3). QT recursively prunes data
points from the space exhibiting the greatest number of
neighbours within a threshold distance, and suggesting these
as cluster centres. In our experiments the result is a set of
around 230 diverse poses (from 4500 frames) sampled from
the performance ‘Blueprint’ (c.1978)*.

The training pose descrlptors he upon a non-linear mani-
fold of valid poses within D € 32, which we model in piece-
wise linear fashion by building a graph (G) in which training
poses are nodes (denoted ns) such that G = {ns}. Connec-
tivity is defined via undirected edges, connecting each node
to up to the N other closest nodes in the Euclidean neigh-
bourhood (and falling within an upper distance threshold
T). In practice we use N = 10. The weight between two
training nodes w(ns — n:) on each edge are proportional to
the Euclidean distance between the nodes connected.

if [ns —ne| < T

1—exp(lns —n 2
wlns = ne) = { 0 7 o else.

(2)

where |.| yields the Euclidean distance between training
pose descriptors. Assessing the similarity of two video poses
on the manifold is now a matter of computing shortest path
between two nodes (see Sec 4.2).

In addition to building G with training pose, it is neces-
sary to include all frames in all videos within our database to
produce a useful retrieval system. Due to the noisy nature

!Three Dances (Spink) ref ED/2010/10/5, Blueprint (Al-
ston) ref ED/2010/4/6 from the Extemporary Dance The-
atre Archive held at the National Resource Centre for Dance,
University of Surrey (©)

of the footage, invalid silhouettes may give rise to invalid
pose descriptors off the manifold. It is undesirable to permit
such data points to make larges changes in the topography of
G. We categorize frames as being either ”confident” (n.) or
“unconfident” (n,) by checking the covariance of their pose
descriptors within a temporally local window in the video.
Limited determinant of the covariance indicates a stable set
of descriptors over time, which we assume implies a frame is
n. otherwise n,. We expand the graph to G = {ns, nc,nu.}
via the process outlined above, but limit N to 1 when ad-
mitting n, to G as illustrated in Figure 2a. The geodesic
distance across the manifold for any two poses in the dataset
is now approximated by a shortest path computation over

4.2 Learning Domain Transfer

We learn a mapping between S and D as a one-off pro-
cess using the set of training poses identified in Sec 4.1. We
manually annotate each pose with a sketch, from which the
joint angles are obtained via Section 3.1. This yields a map-
ping s — d € {S,D} for each training pose. From this
sparse mapping we are able to make a number of inferences
at query-time facilitating sketch based pose retrieval.

First, for any provided query sketch (¢ € S) we can com-
pute the similarity between that sketch and any of the train-
ing sketches. The closest training sketch to g (denoted here-
after s) is identified, and the probability of similarity in
space S modelled using a Gaussian distance function:

2
q—s
o= sF 3)

Second, for any training sketch (e.g. s) we know s — d
and so know the corresponding node in G (denoted ng). We
may thus compute the shortest path across G to any other
node i.e. video frame in our database. The product of the
weights along the path between nodes is normalized similar
to eqn 3, but where the distance between s and d is the
geodesic distance. So the normalized probability of frame
nq and an arbitrary frame n, being similar are:

p(slq) o< exp —

H 1 — p(na|nes). (4)

{a,b}eg

p(ng|ng) =

as a product where n, and n; are pairs of adjacent nodes
on the shortest path. In practice the product of weights
along the shortest path can be obtained using Dijkstra’s
algorithm over a set of log-weighted edges.

Combining equations 3 and 4 we compute the joint prob-
ability of any video frame in our database (n.) being similar
to our query (q) as:

p(nzlq) = p(slg)p(nalns). (5)

where p(ng|nsz) « p(d)p(ne|nq) by Bayes, and we assume
a uniform prior p(d) over all training frames. This can be
efficiently computed at query time as the shortest path cal-
culations may be pre-computed across G offline. The process
for computing p(ng|q) is illustrated in Fig. 2b.

4.3 Sketch based interaction

The proposed retrieval algorithm is integrated into a web
based UI. Users are able to draw and then manipulate the
articulated skeleton (g) to query the system. The results
are displayed as in Fig. 3, as a grid of clustered results.
Ranking all frames n, in the database by p(ns|q) provides
the user with the results. An enhanced results view enables
the clustering of temporally local results (as adjacent frames
exhibit similar scores), and so the user may readily identify
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Figure 2: Manifold mapping underpinning our retrieval system. (a) Manifold construction. Training poses (green) are
manually marked up creating sparse correspondence between S and D. The search graph is constructed across training points
in D to approximate the manifold. Additional points (red) are added to D from each video frame in dataset. ‘Confident’
frames (section 4.1) connect up to N training nodes (e.g. x2), ‘unconfident’ frames (e.g. x1,3,4) connect to the nearest training
node. (b) Query processing. A query ngq is initially matched to find the closest training sketch ns. The corresponding training
pose ng is used to compute geodesic distance (magenta) to each item in the dataset z;.

Skech | Skeleton Search

Figure 3: Pose retrieval and choreography creation interface.
See accompanying video URL (Sec. 6) for demo and results.

temporally disjoint segments of the video that closely match
the query pose of interest. With several poses defined in this
manner, users are able to specify inter-pose actions, multi-
ple desirable actions between poses may be combined (our
representation for each connecting action is a probability
distribution over all action classes, see Sec. 5).

Interestingly, the ability to map bidirectional between S
and D enables us to transfer not only from skeletal pose to
image (for retrieval) but also from image to skeletal pose.
The ability to convert images to a set of joint angles allows
query suggestion, where "shadows” of stick man poses within
the database may be visualized beneath the users sketch as
outlines to assist in the retrieval process. This produces an
interactive interface reminiscent of the ShadowDraw clipart
retrieval system[23].

S. SKETCH BASED CHOREOGRAPHY
SYNTHESIS

The novel choreographic video sequence by sketching a
sequence of pose keyframes, interspersed by desired actions
(e.g. twirl, run). The novel sequence is generated by seam-
lessly concatenating fragments of an existing video, extend-
ing the Video Textures concept of Schodl et al [29].

5.1 Video Motion Graph generation

We construct a motion graph [22] by identifying transi-
tion frames; points in the video where temporally disjoint
frame sequences may be seamlessly concatenated for play-
back. These transitions form nodes in the motion graph,
with edges indicating frame sequences between transitions
(Fig. 4). Random walks across the graph could generate
novel sequences in perpetuity (as with [29]); however our
system plans paths across the graph to produce user-guided
output.

Transition points are identified by exhaustively compar-
ing pose descriptors via eq. 4 from all pairs of frames of
the video, and retaining those above a similarity threshold
as transition candidates. This comparison is computed in
a matrix, and smoothed using an isotropic filter to penalize
local temporal incoherence in pose. As visual dissimilarity
may be observed in video even in the presence of similar
poses, optical flow[4] is used to calculate the visual dissimi-
larity of frames at candidate transitions by summing motion
vectors between the frames and discarding candidates that
exceed a threshold.

Frame-frame edge weights in the motion graph are com-
puted via eq. 4, and sketch-frame weights via eq. 5. In
addition we require frames to be labelled to indicate the
likelihood of eleven different activities taking place local to
that instant. Our activity set is: twirl, spin, walk, run, leg
raise, leg lower, leg extend, spin with leg extended, crouch,
step and overhead kick. Action labelling can be performed by
any regular activity recognition algorithm (e.g. [31]) using
our pose descriptors (D) as a basis for activity classification
— such labelling is a black-box process beyond the scope of
this paper.

5.2 Video Path Optimisation

With a sketched storyboard defined by the user we identify
a path across the motion graph. For each pair of keyed poses
a ‘virtual’ source node is added into the motion graph for
the start pose, with edge links to all nodes weighted by the
similarity between the sketch and that transition frame (via
eqn. 5). The successive (end) key pose is added as virtual
sink node. This node also becomes the source node on a
second copy of the motion graph, which serves this start
pose and the subsequent end pose (Fig. 4 illustrates). Thus
for k keyposes, k — 1 copies of the motion graph and chained
together by virtual source and sink nodes. A shortest path
optimization is used to find the optimal route passing from
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Figure 4: Video synthesis via motion graph. A directed
graph is constructed from video fragments comprising se-
quential blocks of frames (blue marks on edges) linked seam-
lessly at transition frames (blue nodes). Sketched key poses
(magenta nodes) are added as virtual nodes linking copies
of the motion graph. The path with lowest cost (red), by eq.
6, from first to last key pose yields the new choreographic
sequence.

the first to last virtual node (key pose), using Dijkstra’s
algorithm.

Path cost is evaluated as a function of pose similarity
(Crarget), action constraints along the path (Caction), and
duration of the sequence (Crime):

C = prTarget + waCAction + wtCTime- (6)

with user-specified weightings {wy, wa,w:} for pose, action
and time respectively, which are set as specified in Sec. 6.2
for results presented in this paper are configurable via the
UL

Pose similarity encoded by term Crarget is analoguous to
edge weights accumulated in the classical shortest path algo-
rithm. In the case of frame-frame moves within the motion
graph (black edges in Fig. 4) similarity is determined by
geodesic distance between the two frames across the mani-
fold D (eq. 4). In the case of edges between the virtual nodes
(start/end poses) and a frame in the motion graph (magenta
edges in Fig. 4) the cost is determined by the joint proba-
bility (i.e. overall similarity function) of our pose retrieval
algorithm (eq. 5).

To incorporate action constraints, each edge in the motion
graph is augmented with a probability vector across action
classes expressing the activity (run, twirl, etc.) detected
local to that pair of frames. The proposed shortest path is
segmented into k — 1 linked stages; each being the portion
of the path passing through a copy of the motion graph
linked by the virtual source/sink nodes (i.e. between the
k — 1 pairs of key poses). The probability vectors for the
set of frames in each linked stage {li...lx—1} are averaged
independently yielding action probability vector A(l;). An
ideal path would result in minimal total difference between
A(l;) and the action distribution specified by the user for
that linked stage A(g;) i.e. between the respective pair of
key poses. The cost Caction is therefore given by:

k—1
1
Caction = E—1 Z [A(l:) — A(gs)]- (7)
=1

The temporal cost Crime is derived from a count of the
number of frames on the proposed path. The absolute dif-
ference betwen this and a target sequences length L (here
we use 5 seconds per keypose pair) encourages appropriate
transition times. Conceivably this parameter could be in-
corporated in the Ul in future.

k—1
CTime :S(ZHlZl_L') (8)
=1

where S(x) is sigmoid function is used to normalise this final
term.

S(z) = (3 — 2x). 9)

5.3 Video Synthesis

The optimised path yields a frame sequence through the
original video comprising the novel choreography. Although
pose-coherent, any variability in the performer’s appearance
(e.g. illumination) and in stage location can complicate visu-
ally seamless stitching. Although spatial location might be
incorporated as a constraint into the optimisation, in prac-
tice requiring adherence to original stages location places
too many constraints on the original footage to permit novel
choreographic sequences to be realised. We therefore opt for
an ‘infinite’ stage, scrolling the stage against the motion of
the performer’s bounding box. This scrolling is smoothed us-
ing a low pass filter to avoid visual discontinuities. The per-
former is composited onto the stage utilising the previously
obtained silhouette, and utilising Poisson blending [26] for
gradient-aware compositing. Additional simple cross-fading
is applied at the points of transition between video fragments
to mitigate any remaining visual discontinuity in playback.

6. RESULTS AND DISCUSSION

We evaluate ReEnact using both low and high fidelity
footage from the UK Digital Dance Archives (DDA) repos-
itory. For low fidelty footage we use archived performances
of "Blueprint” and "ThreeD” from the 1970s Extemporary
Dance collection!, both digitized from cinefilm at 25fps, of
duration 5:18 and 2:49 minutes respectively. Challenging
features of this footage are its grainy, low contrast nature
and heavy motion blur. We also demonstrate higher fi-
delity footage, ?Autumn” from the NRCD ? and a studio
captured expressive contemporary dance performance "Ex-
pressive” similarly at 25fps, of duration 2:05 and 6:40 re-
spectively. In the latter case footage is HD (1920 x 1080),
otherwise footage is PAL (720 x 576). All videos were inter-
laced.

The pose retrieval, and the synthesis component of ReEn-
act are evaluated independently. Retrieval is evaluated using
the learned manifold for Blueprint, generalised onto unseen
videos (ThreeD, Autumn, Expressive) with performance
quantified using Average Precision (AP). In addition, we
demonstrate our inference process for retrieval can be run
‘backward’ yielding explicit pose estimation for any given
frame. Choreography synthesis is evaluated qualitatively
with examples of sketched storyboards and representative
output (see also the accompanying video®)

6.1 Sketch based Pose Retrieval

We evaluate the ability of the pose retrieval system to gen-
eralize to all (non-training) frames in Blueprint as well as to
three unseen videos "ThreeD”, ?Autumn” and "Expressive”.
For each video six queries were drawn and AP computed
over these for the top 1-80 results (Figure 6). Note that
when evaluating on "Blueprint” we use only ~ 97% of the
available frames (as 230 frames were manually marked up
and used to train the system). We determine a result to
be incorrect if, on visual inspection, more than one limb is

2Reconstruction of Autumn created for National Resource
Centre for Dance, University of Surrey

3Supplementary video at
http://www.dance-archives.ac.uk/media/12905
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Figure 5: Top 5 results of the sketch(left most) / skeleton query(second left) for: (a) Blueprint(Train) video, (b) Autumn(test)

video, (c) ThreeD(test) video, (d) Expressive(test) video

judged to be out of place by a few degrees. Although not
explicitly handled by HOG descriptor we make this compar-
ison insensitive to the left-right orientation of the figure.

Figure b5 illustrates a representative subset of queries for
each video and their corresponding results. In all cases poses
returned closely mirror those of the sketched query, and as
expected the results from the (unseen frames) of training
video Blueprint appear qualitatively superior to those from
entirely unseen clips as test data is closer to the domain
of the training data. Nevertheless the system has correctly
transferred learning over Blueprint poses to enable correct
retrieval of unseen poses from the three other video sources
(including those with significantly different visual quality).
The sensitivity to left-right orientation is seen in 5c sec-
ond query where shape is very similar but are evaluated as
incorrect.

A quantitative comparison of performance over the four
clips is given in Figure 6. The MAP scores for Blueprint
(60.0%), ThreeD(50.6%), Autumn(47.0%), Expressive
(44.4%) indicate the system was able to generalize well from
minimal training, without significant performance drop on
content that differed from the training exemplars. The run-
time performance of the system is real-time with queries
taking ~10ms for several thousand frames using an unopti-
mised C++ implementation on a quad core 3Ghz PC.

Retrieval precision is influenced by the quality of mask
extracted from the video; despite an elaborate silhouette
extraction process being performed, limbs are susceptible to
being removed by the algorithm especially in the more chal-
lenging lower fidelity footage that exhibits heavy blur and
contrast bleaching. In cases where the algorithm failed to
retrieve available poses, or returned unexpected results, vi-
sual checks identified that the silhouette masks were being
incorrectly generated. We conclude that there is sufficient
robustness and generality offered by our main contribution
(manifold mapping over a HOG based descriptor), but that
the initial performer extraction pre-processing could be ro-
bustified or potentially tailored to match individual content

types.

6.2 Choreography Synthesis

We demonstrate the ability of the system to create new
choreographic sequences from sketched keyframes, over both
the "Blueprint” and “Expressive” videos. In Figure 8 we

—Blueprint (Train)
—ThreeD (Test)

Autumn (Test)

—Expressive (Test)

Precision

Rank
Figure 6: Plotting precision for Blueprint (training), ThreeD

(test) Autumn (test), Expressive (Test) over the top 80
ranked results

demonstrate a sample video created, from its raw sketch
automatically converted to skeleton to the synthetic frames.
We demonstrate both the full frame results of the key frames
as well as actions as performer cut out images demonstrat-
ing the action betweeen. For the purpose of visualization,
the distribution of action between keyframes in the new syn-
thetic video is shown between keyframes. The example in
Figure 8 and further example videos are included as supple-
mentary video material (Sec. 6).

Choreographic generation through Poisson blending on
the stage quality can suffer badly from a bad mask, therefore
in these cases we avoid entering sections that has automat-
ically been identified as low quality. This can complicate
the synthesis, in both requiring an alternative source/target
being defined that is handle implicitly by our virtual node
approach to motion graph generation; also in the path to be
completed may be forced to go off a more desirable route.

Although weights for video duration are user defined, gen-
erally video lengths for a story board composed of three
sketches with interspersed actions are of length between 15-
90s. In the case of the sample video in Figure 8 the new
video is of 67s. The system is reactive but not particular
sensitive to the weightings in the cost functions; for all the



results reported here we used the same weightings. Specifi-
cally, we up-weighted the action and pose requirements, to
0.6, 0.9 respectively and set the time weight low at 0.3 to
avoid a short video being generated.

New sequences are typically generated in under 10 min-
utes, though the majority this runtime is spent on blending
frames (e.g. Poisson blending) without which a sequence
may be generated in under one minute.

6.3 Inference of the Skeleton

An interesting property of our inference framework is that
it may be run in reverse to infer the joint angles (skeleton)
of the performer given a video frame. Given an indexed
video frame corresponding to any node n, in G, the sim-
ilarity p(ni|nz) to n;, the i*® training frame in set n., is
available via eq. 4. Given the marked-up pose s(n;) € S
corresponding to n, we can infer a skeleton i.e. vector of
joint angles approximating n, as:

s(ng) = — Z s(n)N (1 = p(nilng), o). (10)

where N is a Gaussian distribution with emperically set
standard deviation o. Fig. 7 (top) illustrates sample output
for Blueprint.

Although explicit human pose estimation was not origi-
nally intended as contribution of this work, it is nevertheless
interesting to observe that reasonable skeletons can be ob-
tained from low fidelity footage where state of the art meth-
ods [13, 32] currently fail. We qualitatively demonstrate
this property through visual comparison on video frames
that fail under these algorithms. Fig. 7 contrasts the skele-
ton obtained from a single frame using the public implemen-
tations made by Ferrari et al. [13] and Yang et al [32] on
their respective project web pages. As our approach doesn’t
directly infer the lengths of limbs we use a skeleton of user-
specified size and set the joints as per the angles inferred by
our process. Although this results in some alignment error,
the pose generated is comparable and in some cases more
closely mirrors the video content under our approach. Ex-
plicit pose estimation is not a goal of our work, and future
work will more robustly investigate these initial observations
on this additional property of our algorithm.

Figure 7 shows that we are able to infer resonable ap-
proximations of poses not only on our training video but on
test videos too. We additionally demonstrate this through a
small clip in the supplementary material in contrast to the
more successful approach of Yang, over the footage.

7. CONCLUSION

We have presented two contributions: 1) a system for
searching archival dance video for free-hand sketched poses,

Our Method

Yang[32]

==
%

Ferrari[13]

Figure 7: Comparison of Articulated skeleton estimation be-
tween our method, Yang [32] and Ferrari [13] over Blueprint
two left most, ThreeD middle two and Expressive right two.

2) a system for generating new dance sequences from the
archive, keyframed by retrieved poses and intermediate ac-
tions.

Our retrieval system operates by learning a mapping be-
tween a query space (skeletal joint angle) and a visual de-
scriptor space, using around a two hundred hand-labelled
examples. Once learned this mapping is shown to generalize
to unseen video with a averaged(over test videos) MAP of
0.46. This mapping is also demonstrated to perform skeleton
inference comparative or better in more challenging cases
than state-of-the-art techniques. Interestingly, performance
on the higher fidelity test footage types was slightly lower
than the more challenging footage ("ThreeD’) showing that
similarity of test footage to the training domain (230 frames
from 'BluePrint’) is more important than resolution or sig-
nal quality. This indicates that transfer learning approaches
could be applied in future work when adding nodes from
unseen (test) content to our graph search structure.

We demonstrated that the concatenative synthesis ap-
proach of Video Textures [29] can be extended to appearance
and action-aware synthesis of new video choreography, via
our novel path optimization approach. Further work to op-
timize silhouette extraction would improve both search and
synthesis, as merging limbs in the mask is the main cause
of ambiguity in the image descriptor. Additional cosmetic
improvements could be made in the video blending used at
transitions also. However we believe the most promising
directions of the work are in the synthesis and search algo-
rithms rather than the video pre- or post-processing steps.
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