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Abstract—This paper presents a set of methods for classifying
the color attribute of objects when multiple images of the same
objects are available. This problem is more complex than the
single image estimation since varying environmental effects, such
as, shadows or specularities from light sources, can result in poor
accuracy. These depend primarily on the camera positions and
the material type of the objects. Single image techniques focus
on improving the discrimination of between colors, whereas in
multi-view systems additional information is available but should
be utilized wisely. To this end, we propose three methods to
aggregate image pixel information in multi-view that boost the
performance of color name classification. Moreover, we study the
effect of shadows by employing automatic shadow detection and
correction techniques on the color naming problem. We tested
our proposals on a new multi-view color names dataset (M3DCN)
which contain indoor and outdoor objects. The experimental
evaluation shows that one out of the three presented aggregation
methods is very efficient and it achieves the highest accuracy
in term of classification results. Also, we experimentally show
that addressing visual outliers like shadow in multi-view images
improves the performance of the color attribute decision process.

Index Terms—Multi-view geometry, Color classification, Ag-
gregation, Shadow detection, Shadow removal.

I. INTRODUCTION

The classification of color is used for applications such as
pedestrian re-identification, automatic visual captioning, visual
question and answering, and many other computer vision
tasks [1], [2] where the interpretation of the attribute “color”
is fundamental. As an example, for content-based retrieval,
knowing the color of the object in an image narrows the
possible search space. Differently from the single view case,
naming the color of an object results in a more complex
task. 3D reconstruction [3] can help to inform the decision,
but integration is nontrivial. Different views entail changes
in illumination given both by the material of the objects
and position of the light sources in the scene. Moreover,
when seeing an object (fig. 1) with a wide camera baseline,
occlusions might provide a partial view of the object or (self-)
shadows may conceal the color.

Thus estimating the correct color while having a set of
possibly noisy observations is a new and challenging open
problem. Past research tried to solve the problem for single
view by proposing more discriminative color algorithms [1],
[5]–[8], but results are still unsatisfactory on in-the-wild
datasets. This problem is due to two main reasons: Firstly,

Fig. 1. The 3D mesh of an object from the Matterport 3D dataset [4] in
center, with a subset of views surrounding. The surrounding views demonstrate
different scales, specular reflections, and self shadowing.

colors ambiguity – boundaries between colors in color space
are not well specified e.g. humans can not trivially decide what
is the name of the color in the space between blue and green.
As the problem is ambiguous for humans, this difficulty is
translated to any computational approach. Secondly, illumina-
tion – colors are always affected by the environment lighting,
and an object can be perceived as having different colors based
on the surrounding light and its material reflection properties.
For example, in low light or shadows, dark colors can be seen
by humans as black, while white instead would be considered
as gray and other colors will tend to be darker. However, if we
have prior knowledge that a particular object is under shadow,
this problem is made simpler. For this reason, color naming
might be largely facilitated by finding the regions where the
object is under shadow. In addition, if the object has specular
highlights given its reflectivity, the related regions will also
cause difficulty when deciding the color name.

In this paper we are trying to solve the multi-view color
naming problem by proposing aggregation methods to utilize
as much as possible of the information provided by the
multiple images. In particular, we define three strategies for



merging the color information while attempting to reduce
noise and outlying effects (e.g. shadows). To this end, before
initiating the color labeling process, we try to obtain prior
information about shadows regions, in order to either remove
the shadow pixels or to correct them before our multi-view
decision process.

We can list the main contributions in this paper as:
• We propose three simple and robust aggregation tech-

niques for multi-view color naming that utilizes wisely
the available information across views;

• We study the effect of shadows in multi-view color
labeling and propose to integrate shadow information in
the aggregation algorithms to enhance the performance;

• Present the first multi-view 3D dataset for color naming,
Matterport 3D Color Naming dataset (M3DCN) 1.

II. RELATED WORK

Early work in color naming by Berlin and Kay [9] identified
eleven basic color labels shared among most human languages.
One of the first work in automatic color labeling was by
Lammens et al. [8] who proposed a fuzzy computational model
where the membership of a set of Gaussians fitted to Berlin
and Kay’s labels predicted the color label. Seaborn et al. [6]
fitted data from a psychophysical human experiment using
fuzzy k-means to create the grouping of colors. Similarly,
Mojsilovic [10] performed subjective experiments to label the
colors from the Inter-Society Color Council-National Bureau
of Standards (ISCC-NBS), creating a color vocabulary based
on the agreement between their labels and ISCC-NBS color
names. Vandenbroek et al. [11] also used subjective human
experiments, creating a similar dictionary that are then used as
markers within HSI space. Vandenbroek et al. then projected
these markers into 2D using Fast Exact Euclidean Distance
projection technique to create a complete segmentation of
the color space. Benavente [5] defined the color naming
task as a decision problem using fuzzy-set theory based
on the definition of triple sigmoid with an elliptical center
as a membership function for the different colors. Serra et
al. [12] subsequently used the work of Benavente [5] as a
color descriptor over regions which could be combined with
edge descriptors for image decomposition through a Markov
Random Fields (MRF) to create color aware homogeneous
regions. The aforementioned works in automatic color labeling
are generally referred to as chip based methods as it used color
chips as training data.

Weijer et al. [7] proposed to learn from real-world im-
ages allowing more general color distributions to be learned.
Their method learned a Probabilistic Latent Semantic Analysis
(PLSA) topic distribution from the noisy data. Images pixels
were represented as words in a LAB histogram feature and
the ordered latent topics were used to provide a probability
of colors. This method is still considered as the state-of-the-
art in single image color classification and commonly used
to generate visual question and answering ground truth. More

1M3DCN available at https://github.com/mohamed-elkhouly/M3DCN

recently, Liu et al. [13] used the color naming as a part of
fashion parsing model, in contrast to other referenced methods,
they infer 13 color names and other attributes for each pixel
via an MRF inference model. Similarly using MRF, Liu et
al. [14] used the color-naming model proposed in [5] to build
a MRF to propagate the color labels from regions under normal
illumination to abnormal regions to help estimate color names.

Most recently, Cheng et al. [1] proposed an end-to-end,
pixel-to-pixel Convolutional Neural Network (CNN) learned
from a pedestrian color naming dataset to assign a consistent
color name to regions of single object’s surfaces. The color
naming problem has also been considered from a multi-label
perspective for ImageNet for assigning attributes to images by
Russakovsky and Fei-Fei [15]. To the best of our knowledge
there are no works about multi-view color labeling.

The shadow detection and removal problems were originally
formulated as a physical model of illumination and color
[16], [17]. These illumination invariant techniques performed
well on high quality images and with calibrated sensors,
but typically performed poorly on web-quality or consumer
photographs. Alternative to the physical models, data driven
approaches extracted features from pixel values or regions
to treat the problem as a binary classification task. Different
classifiers have been used such as SVM [18]–[20], kernel LS-
SVM [21], [22] and decision trees [23], [24] to label image
regions into shadow and non-shadow regions. After, an MRF
graph-cut with energy minimization optimization provided
spatial consistency [18], [20] to the mask. Also, Conditional
variants using CRF [24] have been used to further improve
spatial consistency.

Khan et al. [25] were the first to apply deep models for
shadow detection, they used two CNN to learn deep features
for shadow detection. Where one of the CNNs learned the
boundary features and the other interior of the shadow. The
predicted posteriors were then fed into a CRF for spatially
consistant masks. End-to-end approaches were explored by
Qu et al. [26] who used a three branch network, global,
appearance and semantic, which are combined to generate
a mask. Alternatively, Hu et al. [27] proposed Direction-
aware Spatial Context RNN module which models the gra-
dients that occur at shadow boundaries to infer the shadow
region within the image. Nguyen et al. [28] introduced GANs
for shadow detection, proposing to use Stacked Conditional
Generative Adversarial Network (scGAN) where the loss of
the trained shadow detector is parameterized through adding
an additional sensitivity weight provided to the generator to
weight examples and avoid the issue of unbalanced training
data. Wang et al. [29] used GANs in a multi-task setting
considering detection and correction based on scGAN. Where
the first network generates the mask and second the shadow
removed image which would be evaluate by an adversarial
network. Le et al. [30] proposed GAN framework composed
of two networks, a shadow attenuation network (A-Net) and a
detection network (D-Net), which are jointly trained where the
output of A-Net used to train D-Net and subsequently generate
the shadow masks.



III. MULTI-VIEW COLOR NAMING AGGREGATION

We define the color labeling problem in multi-view as a data
aggregation challenge where auxiliary information from views
can mitigate shadow and specularities to achieve improved
accuracy in classification. We therefore base our work on
the state-of-the-art in single image color classification using
PLSA from Weijer et al. [7] and extend it to apply different
approaches to aggregate the information among views. At
first, we obtain our multi-view data in two forms sparse and
dense points (described in subsec. III-B) from the M3DCN
(subsec. IV-A). The classification is then performed over 11
colors, as is common in prior work, we outline the method of
Weijer et al. [7] (subsec. III-A). We then define three methods
for aggregating this information across views (subsec. III-B),
finally we address a common environmental issue of shadows
that can cause significant changes in the classification decision.
The full system pipeline shown in (Fig. 2).

A. Color Naming

Color classification is often treated as a topic learning prob-
lem, as in [7] which learns from weakly labeled images using
a variant of the Probabilistic Latent Semantic Analysis (PLSA)
model. Given a set of images I = {i0, ..., iN} in LAB color
space, the set of pixels for Ij produce a frequency histogram
by quantizing the color space by [10, 20, 20] of LAB channels
respectively. Where each histogram, as in traditional text
analysis notation, represents a document D = {d0, ..., dN}.
Therefore, the set of words W = w0, ..., wm refer to the
bins of the color space quantization. PLSA then optimizes
a set of latent topics Z = {z0, ..., zJ} through expectation
maximization of the conditional probabilities as in

p(w|d) =
z∈Z∑
z

p(w|z)p(z|d), (1)

where p(w|z) and p(z|d) are multi-nomial distributions (no-
tation as per [7]). Weijer et al. proposed two ways to exploit
the learned topics, through an indexed look-up of the word
color probabilities (eq. 2) and exploiting a region prior. Given
our multi-view scenario, we exploit the object segmentation,
and therefore the prior is not required. The indexed approach
is referred to by PLSA-ind:

p(z|w) ∝ p(z)p(w|z). (2)

Where the prior over the color names p(z) is taken to be
uniform.

B. Multi-View Color Naming aggregation

Given a sequence of images I , we propose three methods
for aggregating the multiple views of a given object. The
object views V = {v1, ..., vr} where V ⊆ I provide the
color image, object mask and the object 3D point cloud. We
propose to use sparse points – which are projected from the
3D point cloud into the color image; and dense points –
acquired by filtering the color image with the object masks.
Then the corresponding LAB values of the points and their

Fig. 2. Pipeline for multi-view aggregation for color naming using the object
multi-view data. Experiments are performed by considering both sparse and
dense points representation of the object. Then three different aggregation
methods are defined. The first is passing the data to test on the aggregation
techniques directly (basic). The second, applies shadow detection by using
either hard or soft masks we exclude the data pixels labeled as shadow. The
third, is to apply shadow correction then use the corrected data to test on the
aggregation techniques. Finally the output is the color name of the object.

corresponding word then form a decisions Cp we use to
refer to the distribution p(w|z), and Cv to refer to the color
decision for frame. The three methods are therefore as follows:

Method 1: Follows PLSA-ind [7] to predict the color of the
object in each view vi, then aggregated by the most frequent
across views:

Cv = mode{argmaxz(Cpk) : k = 1, . . . , n}, (3)

CObject = mode{Cvl : l = 1, . . . , r}, (4)

where n is the number of object pixels in the given frame,
CObject is the color decision from all frames.

Method 2: Uses all probabilities and therefore not applying
max which restricts the propagation of information. Defined
as:

Cv = argmaxz(

n∑
k=1

{Cpk}), (5)

CObject = mode{Cvl : l = 1, . . . , r}, (6)

The difference between Method 1 and 2 can be seen in Fig. 3,
which demonstrates how intra-class confusion can be lost at
this initial stage.

Method 3: As with Method 2 the probability distribution Cp is
used, in addition to considering an importance for each frame
in the decision process. This importance will be calculated
by the visible area of the object at each frame, using it as a
weighting function. It is defined as:

CObject = argmaxz(

r∑
l=1

ωl

n∑
k=1

Cpk) (7)

where ω is a l1 normalized vector containing the weight for
each frame according to the visible area of the object.



Fig. 3. The difference between using probabilities of colors of four objects
from all of their frames against using the maximum probability at each
color index for deciding the color name of the object. Using all probabilities
(highlighted in red) is giving more information about all colors, and is better
for the most occurring color in all frames even if it is not the maximum,
which drives to the right label.

C. Using Shadow Detection and Removal in Color Naming

To avoid including outliers due to shadows on or by the
object in classification we incorporate shadow detection. We
look at three types of shadow analysis, soft shadow mask – a
probability distribution over the image; hard shadow mask –
a binary mask of areas in shadow; and shadow correction –
for correcting the color within the shadowed regions.

Soft Shadow Mask: The posterior probabilities from the
shadow detection algorithm corresponding to how much each
pixel affected by shadow. The GAN-based framework ADNet
of Le et al. [30] which generate soft shadow masks can
be used as a shadow weighting for color classification Cpk.
Their technique composed of attenuation network (A-Net)
and a shadow detection network (D-net). The A-Net mainly
was used to generate training examples for augmenting the
training data for D-Net with hard-to-predict cases to fool it.
Finally generating a soft classification shadow mask. To use
the soft shadow mask as a weighting we normalize the soft
mask and use it as a probability of shadow.

Hard Shadow Mask: A binary mask labels each pixel as
either affected or not by shadow. Guo et al. [20] proposed a
Graph Cut based method that outputs a binary segmentation,
as the resultant optimization either falls into the source or
sink. In Guo et al. approach classifying individual regions
subsequently pairing regions to construct an MRF graph.
The unary term is derived by classifying the paired regions
to same illumination and different illumination according to
their similarity on appearance and textures and the pairwise
term is the distance within the image between regions energy
minimization is applied to solve for binary labeling. In addition
we can apply thresholds to the soft shadow technique of
Le et al. [30] to get the hard masks, using three thresholds
[0.3, 0.6, 0.9] to neglect shadows under the threshold (see
Fig. 4). Other thresholds were empirically evaluated and had
similar results, for simplicity we only mention three levels.

Fig. 4. From left to right: original image, hard shadow mask from soft shadow
mask using thresholds 0.3, 0.6, and 0.9 respectively. Finally the most right is
the soft shadow mask, where shadow is the white label pixels

Shadow rejection condition: Dark objects are often
misclassified as in shadow (see fig. 6), also noted in [27].
Therefore, we apply a condition to decide when to apply
shadow masks, where if > 70% of the object is labelled as
in shadow, the weighting is not applied for that image.

Shadow Correction: To correct the color for regions under
the shadows mask we apply the technique of [20]. For a
given region pair Ri (as described in Hard Shadow) which
falls under two sources of lights, direct Ld and environmental
Le, see eq. (8). They correct the shadowed region pairs
identified as same illumination using the higher illumination
with the assumption the illumination conditions are preferred.
Constrained by estimating a fractional shadow coefficient
value using a matting technique and the ratio of direct to
environmental light in each color channel, enabled them to
recover a shadow-free region, see [20] for more details.

Ishadowfree
i = (Ldcosθi + Le)Ri, (8)

As the shadow correction technique depends on the same
method as in hard shadow masks [20], we apply the same
shadow rejection condition to improve the correction results.

IV. EXPERIMENTS AND DISCUSSION

A. The Matterport3D Color Naming Dataset (M3DCN)

We propose the Matterport3D Color Naming dataset
(M3DCN) for multi-view color naming which is based on ob-
jects from the Matterport3D dataset [4]. M3DCN was collected
by asking 7 participants to annotate the color names of objects
from the Matterport3D dataset. Each participant was presented
with the visible parts of objects from all views outlined using
the object mask to make it clear which object to focus on
(see Fig. 1). We then use the objects consensus with uniform
color label in our dataset which was class balanced resulting in
10 objects per color, 110 total. Although some categories are
dominant, pink and orange objects are rarely present in the
Matterport3D scenes. M3DCN objects vary in material and
number of views (see Fig. 5). We show the semantic class
distribution of objects in Table I. For conciseness in the table,
we group similar objects under one label e.g. sofa chair or
barbers chair are grouped under chair.

B. Results & Analysis

We extensively evaluate the different permutations of the
three proposed aggregation methods and the effect of incorpo-
rating hard and soft shadows for both sparse and dense points
shown in Table II by classification accuracy of these different
configurations.



TABLE I
FREQUENCY OF SEMANTIC CLASSES IN M3DCN DATASET.

Object Count Object Count Object Count Object Count
fireplace 1 canister 1 picture 2 toilet 1
bathtub 1 floor 3 lamp 3 sink 1
trashcan 3 door 2 grass 1 stool 1

bed sheet 1 vanity 1 guitar 1 kettle 1
door frame 1 table 3 tv 1 pan 1
decoration 4 chair 17 bed 2 pot 2

clothes 1 pool 1 curtain 1 toaster 1
cushion 3 pillow 13 stair 1 plant 3

container 1 recliner 2 towel 1 cabinet 7
light 1 chaise 1 stand 1 wall 9

concrete 1 kitchen island 1 couch 6 Total 110

Fig. 5. Statistics for the frequency of images (V ) for the 110 objects in the
M3DCN dataset.

When considering the use of sparse and dense points as
input to the multiview classification within the basic approach
(no shadow detection or correction), it can be seen in two
of the three cases there is an improvement by using dense
points with significant improvement for Method 1 and Method
3 with 5% and 4% respectively. Whereas Method 2 suffers a
decrease of 2% caused by the sensitivity to the size of the
object and an increase in noise present by considering all
posterior probabilities. This behavior is generally seen across
other experiments considering shadow detection or correction.

When applying shadow detection we show results with and
without shadow rejection condition (latter shown in parenthe-
ses). Applying shadow detection improves the performance for
sparse on average for method 2 and 3 in sparse with 0.4% and
1.5% increase on average across all shadow detection methods
and thresholds. In general, it can be seen that it either improves
the performance or has consistent performance. In contrast for
dense points, there is a consistent improvement with 0.5%,
0.9% and 1.5% across methods with almost all methods and
configurations improving on the basic performance.

When using hard shadows from Guo et al. [20] or our
threshold variants of Le et al. [30], in the majority of cases
there is an improvement in contrast to the basic methods.
Guo et al. can be sen to consistently improve the accuracy, al-
ternatively Le et al. is sensitive to the threshold being applied.
Soft shadows improve on the basic method for both types of
points but can be improved by a carefully selected threshold.
Sample confusion matrices for weighting and excluding points
based on soft and hard shadow detection respectively can be
seen in fig. 7, we compare using soft shadow masks against
hard shadow masks for Method 3. In the confusion matrices,

TABLE II
CLASSIFICATION ACCURACY OF THE PROPOSED THREE METHODS OF
AGGREGATION USING SPARSE AND DENSE OBJECT POINTS, SHADOW

DETECTION (HARD/SOFT) AND SHADOW CORRECTION. HIGHLIGHTED IN
RED AND BLUE ARE ANOMALOUS RESULTS ANALYZED IN SEC IV-B AND

IN PARENTHESES ARE WITHOUT THE SHADOW REJECTION CONDITION.

Testset M3DCN

Aggregation Method Method 1 Method 2 Method 3

Basic 63.64 69.09 70.91

Guo 66.36
(56.36)

70.91
(60.91)

73.64
(66.36)

ADNet Threshold=0.3 66.36
(63.64)

70.00
(70.00)

70.91
(70.00)

ADNet Threshold=0.6 72.73
(64.55)

68.18
(68.18)

72.73
(71.82)hard

shadow
ADNet Threshold=0.9 63.64

(63.64)
69.09

(69.09)
70.91

(70.91)

Using
Shadow

Detection soft
shadow ADNet 63.64 69.09 73.64Sparse

Using Shadow
Correction Guo 67.27

(70.91)
68.18

(72.73)
71.82

(74.55)

Basic 67.27 67.27 75.45

Guo 68.18
(59.09)

69.09
(64.55)

79.09
(67.27)

ADNet Threshold=0.3 68.18
(67.27)

69.09
(70.00)

76.36
(71.82)

ADNet Threshold=0.6 67.27
(67.27)

67.27
(65.45)

76.36
(67.27)hard

shadow
ADNet Threshold=0.9 68.18

(68.18)
67.27

(67.27)
76.36

(76.36)

Using
Shadow

Detection soft
shadow ADNet 67.27 68.18 76.36

Dense

Using shadow
Correction Guo 68.18

(70.91)
68.18

(71.82)
78.18

(77.27)

it can be seen that colors of objects that are usually lighter
(grey, orange, pink, and white) are misclassified in the case of
soft shadow in favor of their darker equivelance, e.g., white to
gray. This can be explained by the explicit hard masks being
more aggressive as well as being spatially consistent by the
MRF.

It is interesting to note that, when applying the shadow
rejection condition (without parentheses), in most cases it
shows significant improvement except in the cases highlighted
in blue, which are using shadow correction. In such cases, the
over-saturated color from the correction makes classification
simpler even if it does not create visually appealing results.

Overall Method 2 is always better than Method 1 except in
two cases (highlighted in red), while Method 3 is always better
than both Method 1 and 2 in all cases. Showing that using per
point probabilities (not max or mode) and the visible area
weighting of objects helps to come to a reliable classification.
Method 3 with shadows provides improvement of 10% for
sparse and 11.8% for dense over the lowest performing basic
methods showing a benefit using multiple views.

V. CONCLUSION

We propose three methods to solve the multi-view aggre-
gating of decisions for the color naming problem. We have
shown how the outliers caused by shadows affect the ability
to classify color, and how excluding or correcting the affected
pixels improves the classification accuracy. Testing on our
proposed dataset M3DCN dataset, we achieved an accuracy
of 79.09%. The proposed methods can be further extended
to consider other outliers like specular highlights. While the
methods are ammeanable to be applied to other probabilistic
visual attribute problem in multiple views.



Fig. 6. A “black floor” and its generated shadow masks, from left to
right: original image, hard shadow mask using [20], and soft shadow mask
using [30]. As shown it is clear that it is labeled as in shadow. It is also
obvious that [30] less affected by this problem, this is clear in the dark grey
wall which appear on the middle of the right half.

Fig. 7. Confusion matrix for using hard shadow masks (Up) and soft shadow
masks (Down) for shadow detection using dense points on Method 3.
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