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ABSTRACT

Positional reasoning is the process of ordering an unsorted set of parts into a consistent structure.
To address this problem, we present Positional Diffusion, a plug-and-play graph formulation with
Diffusion Probabilistic Models. Using a diffusion process, we add Gaussian noise to the set elements’
position and map them to a random position in a continuous space. Positional Diffusion learns to
reverse the noising process and recover the original positions through an Attention-based Graph
Neural Network. To evaluate our method, we conduct extensive experiments on three different
tasks and seven datasets, comparing our approach against the state-of-the-art methods for visual
puzzle-solving, sentence ordering, and room arrangement, demonstrating that our method outperforms
long-lasting research on puzzle solving with up to +17% compared to the second-best deep learning
method, and performs on par against the state-of-the-art methods on sentence ordering and room
rearrangement. Our work highlights the suitability of diffusion models for ordering problems and
proposes a novel formulation and method for solving various ordering tasks. We release our code at
https://github.com/IIT-PAVIS/Positional_Diffusion.

© 2024 Elsevier Ltd. All rights reserved.

1. Introduction

The ability to arrange elements is a fundamental human skill
that is learned during the early stages of development and is
essential for carrying out daily tasks. Such ability generalizes
across different tasks. Researchers suggest that childhood games,
such as Jigsaw puzzles, LEGO© blocks, and crosswords play
a critical role in building the foundations of reasoning over the
correct arrangement of things (Levine et al., 2012). While each
of these games is tackling a very specific problem, humans have
remarkable skills in “putting an element in the correct place”
regardless of the dimensionality and the information modality
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of the problems, such as 1-dimensional (1D) for arranging texts
or 2D for solving puzzles. We refer to this ability as positional
reasoning and formulate it as an ordering problem, i.e., assigning
a correct position to each element of an unordered set.

Positional reasoning involves numerous real-world applica-
tions, e.g., art restoration. Ancient frescoes and old texts are
usually fragmented and may have missing parts (Dondi et al.,
2020). Computation solutions help archeologists tackle the prob-
lem with classical positional reasoning methods (Derech et al.,
2021; Paixão et al., 2020).

The difficulty in positional reasoning lies in the combinatorial
nature of ordering a set of elements into a coherent (given) struc-
ture. A robust ordering method must be invariant to the input
sets’ random permutations. Previous solutions have been de-
signed to be problem-specific. For example, methods addressing
Jigsaw puzzle operate on a 2D grid by jointly optimizing simi-
larities and permutations (Zhang et al., 2019) or by learning first
an image representation complaint with the set of image tiles
and then solving a standard Hungarian approach for matching
the pieces (Talon et al., 2022). Alternatively, sentence ordering
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Fig. 1: Positional Diffusion is a unified architecture based on Diffusion Prob-
abilistic Models following a graph formulation. It can solve several ordering
problems with different dimensionality and multimodal data.

is a 1D ordering NLP problem where a set of sentences must be
ordered by exploiting pairwise similarities and attention mech-
anisms (Gong et al., 2016; Logeswaran et al., 2018) to form a
coherent paragraph. Although all these problems involve finding
a correct ordering of a set, current solutions are customized to
the data modality and contextual information.

We propose Positional Diffusion, a unified model for posi-
tional reasoning that eliminates the need for architecture re-
design when dealing with different input modalities or various
dimensionalities of the positioning problem (Figure 1). In this
approach, we represent the elements in the set as nodes of a
complete graph to achieve permutation invariance. We solve this
problem by regressing the position of each element in a bounded
continuous space. Our approach is based on Diffusion Proba-
bilistic Models (DPMs) to estimate each element’s position (and
thus ordering) in the set. Using a diffusion formulation during
training, we inject noise into the node positions. To learn the
reverse process that recovers the correct positions, we employ
Graph Neural Networks (GNNs) (Renton et al., 2021; Panda &
Mukherjee, 2024), and we train an Attention-based GNN. The
relationships among the nodes in the graph are unknown, as we
do not assume any prior knowledge about elements’ neighbor-
hood. Thus, each node of the graph is connected to all others and
the attention mechanism assigns an importance weight to each
neighbor before the aggregation phase. At inference, we initial-
ize the graph with sampled positions and iteratively retrieve the
correct ordinal positions by conditioning on nodes’ features.

In this paper, we demonstrate the effectiveness of our formula-
tion and method with three fundamental tasks: i) puzzle solving,
a 2D positioning task with visual inputs, where we compare Po-
sitional Diffusion to both optimization and learning-based meth-
ods, scoring the new State-Of-The-Art (SOTA) performance
among all methods with a margin up to +18% compared to the
second-best learning-based method; ii) sentence ordering, a 1D
positioning task with textual inputs, where we obtain perfor-
mance comparable to the SOTA without the need of re-training
a Large Language Model; and iii) Room Rearrangement, a 2D
positioning task with abstract object representations as inputs,
where we show the benefits of Positional Diffusion formulation
over an iterative denoising strategy on 3D Front (Fu et al., 2021)
Main Contributions and Novelty of the Work:

• We incorporate a graph formulation with DPMs to address

the positional reasoning problem. The graph formulation
addresses the invariance to input set size and permutations,
while the DPMs learn to restore the positions via the noising
and de-noising processes;

• We propose a task-agnostic method, Positional Diffusion,
that implements an Attention-based GNN following a DPM
formulation to address positional reasoning in various tasks
in a plug-and-play manner;

• We show that, without task-specific customization, Posi-
tional Diffusion can generalize and achieve SOTA or on-par
performance among existing task-specific methods.

2. Related Works

We consider related works on recent developments of Diffu-
sion Probabilistic Models and the SOTA methods of the three
representative tasks for positional reasoning: puzzle solving,
sentence ordering, and room rearrangement.

Diffusion Probabilistic Models. Diffusion Probabilistic Models
(DPMs) solve the inverse problem of removing noise from a
noisy data distribution (Ho et al., 2020). They gained popularity
thanks to their impressive results on image synthesis and their
elegant probabilistic interpretation (Ho et al., 2020). We propose
a formulation of the forward and reverse diffusion process for co-
herently sorting a shuffled input by treating the problem as either
n-dimensional vectors sampled from a Gaussian distribution.

Positional Reasoning Tasks. Literature on positional reasoning
is vast and assumes different connotations depending on the
task and modalities involved. Our study focuses on positional
reasoning as an ordering task, i.e., sorting shuffled elements into
a coherent output.

i) Jigsaw Puzzles (Cho et al., 2010) interested the optimization
community with puzzles as a benchmark for studying image
ordering with intrinsic combinatorial complexity (Batenburg &
Kosters, 2009). The most successful strategies are related to
greedy approaches using hand-crafted features (Gallagher, 2012;
Pomeranz et al., 2011) with robustness to noise and missing
pieces (Paikin & Tal, 2015) and solving thousands of pieces.
This task has also been used as auxiliary task for improving
visual encoders (Chen et al., 2023)

ii) Sentence ordering involves positional reasoning on textual
contents, which aims to order sentences into a coherent narration.
Several proposed approaches utilize attention-based pointer net-
works (Vinyals et al., 2015), topological sorting (Prabhumoye
et al., 2020), deep relational modules (Cui et al., 2020), and
constraint graphs to enhance sentence representations (Wang &
Wan, 2019). Other works also re-framed the problem as a rank-
ing problem (Chen et al., 2016), while (Chowdhury et al., 2021)
formulated sentence ordering as a conditional text generation
task using a sequence-to-sequence model (Lewis et al., 2020).

iii) Room Rearrangement is the task of ordering objects in a
scene into an organized arrangement that is compliant with com-
mon sense. Robotics and embodied AI communities recently
showed interest in the problem of re-arranging objects in a room
to a specific goal (Batra et al., 2020). (Wei et al., 2023) narrowed
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Fig. 2: For each task, the input initial set (i) is a permuted version of the solution. Each element of the set is correlated with an initial sample location (ii) xi
T (in 1D or

2D) and an encoding hi from a task-specific backbone (iii). During the training of the diffusion steps (iv) we apply a noising process to each element position xi to
obtain a noisy position xi

t . We concatenate hi with the noisy positions xi
t to create the features and encode them as node features in a fully connected graph. We use a

GNN with an attention mechanism to generate the less noisy positions xi
t−1. During inference, for each element, we sample an initial position xi

T fromN(0, 1) or set it
to 0, and use Positional Diffusion for the full reverse process to obtain the estimated positions x̂i

0.

the problem by focusing on predicting coherent locations for
objects in a messy room without any input goal.

Differently from previous literature in computer vision, natu-
ral language processing, and multimodal learning, we interpret
data shuffling as the noise injection of DPMs’ forward process
and exploit the reverse process of a DPM to retrieve the final
position of each element, that being a sentence, a puzzle piece,
an object, or a sentence-image pair. To the best of our knowl-
edge, our Positional Diffusion is the first DPM-based solution for
positional reasoning that can work with different data modalities
and positioning dimensions.

3. Positional Diffusion

We define positional reasoning as a restoring process that
re-establishes order from shuffled unstructured data distribution
in a Euclidean space Rn, where n = 1 for 1D problems such
as sentence ordering, n = 2 for 2D tasks like puzzle pieces
arrangement. Given an unordered set of K elements with some
task-specific features H = {h1, . . . ,hK},hi ∈ Rd, where d is
the dimension of the features, and with ground-truth positions
X = {x1, . . . , xK}, xi ∈ Rn, our network estimates a set of posi-
tions X̂ = {x̂1, . . . , x̂K}, x̂i ∈ Rn, that matches the real position
of each element. Because we use an iterative diffusion process
defined by T steps, we use subscript t, to refer to inputs/outputs
or features used in the t step of the diffusion chain.

In our method, we adopt a graph-based approach that en-
ables interactions among different elements and accommodates
a variable number of input samples. In particular, we define
a complete graph GN with N vertices and N(N−1)

2 edges (Caelli
& Caetano, 2005), where each data point is represented as a
node with an associated feature vector zi

t = [xi
t; hi]⊤. As shown

in Figure 2, Positional Diffusion uses the DPMs formulation
to iteratively restore the position of the unordered data from
a randomly sampled position and use GNNs to work with our
graph-structured data.

3.1. Network Architecture
To solve the reverse process, we train a GNN that given noisy

positions Xt, features H and a time step t, it outputs the noise
ϵt that is used to calculate Xt−1. Our network operates with
element features hi that can be extracted from any pre-trained
task-specific backbone. We apply the Unified Message Passing
Model (UniMP), a GNN architecture introduced by (Shi et al.,
2021), to process GN . UniMP adopts a Multi-Headed Atten-
tion mechanism to adaptively learn and control the amount of
information that is gathered from neighboring nodes. Multi-
head attention is well-suited for graph contexts where we lack
prior knowledge of node relationships, i.e., we cannot define an
adjacency matrix A.

3.2. Forward and Reverse Process
Building upon (Ho et al., 2020), we define the forward process

as a fixed Markov chain that adds Gaussian noise to each input’s
starting position xi

0 = xi according to a Gaussian distribution.
At timestep t ∈ [0,T ], we adopt the variance βt according to a
linear scheduler and define q(xt |x0) as:

q(xi
t |x

i
0) = N(xi

t;
√
αtxi

0, (1 − αt)I), (1)

where αt = 1− βt, αt =
∏t

s=1 αs. Using this formulation, we can
obtain a noisy position xi

t from xi
0. The reverse process retrieves

the correct position for each data point using the noisy positions
xi

t, and element features hi. We adopt DDIM (Song et al., 2020)
algorithm and sample x̂t−1 as:

x̂t−1 =
√
αt−1

xt −
√

1 − αtϵθ(xt, t,h)√
αt


+

√
1 − αt−1 − σ

2
t · ϵθ(xt, t,h) + σtϵ,

where ϵθ(xt, t,h) is the estimated noise that has to be removed
from xt to recover x̂t−1. In the formula, we omit the super-
scripts i as the network operates on all elements simultaneously
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Table 1: Results for puzzle solving on PuzzleCelebA and PuzzleWikiArts. PO-LA was not assessed for larger sizes due to the computational limitations of its memory
footprint. †Trained on individual puzzle sizes.

DATASET PuzzleCelebA PuzzleWikiArts
6x6 8x8 10x10 12x12 6x6 8x8 10x10 12x12

Paikin and Tal (Paikin & Tal, 2015) 99.12 98.67 98.39 96.51 98.03 97.35 95.31 90.52
Pomeranz et al. (Pomeranz et al., 2011) 84.59 79.43 74.80 66.43 79.23 72.64 67.70 62.13
Gallagher (Gallagher, 2012) 98.55 97.04 95.49 93.13 88.77 82.28 77.17 73.40
PO-LA (Zhang et al., 2019)† 71.96 50.12 38.05 - 12.19 5.77 3.28 -
Ganzzle (Talon et al., 2022) 72.18 53.26 32.84 12.94 13.48 6.93 4.10 2.58
Positional Diffusion w/o Diffusion Process 99.60 95.20 98.62 96.55 98.52 95.30 88.76 75.84
Positional Diffusion - N(0, 1) sampling 99.72 96.78 99.28 98.55 98.52 97.15 94.34 90.26
Positional Diffusion - Zero-centered initialization 99.77 97.53 99.37 98.88 99.12 98.27 96.28 93.26

as a graph. DDIM introduces the parameter σ to control the
stochastic sampling. As the ordering tasks have only one correct
arrangement, we set σ = 0 to make the sampling deterministic.

Our method is trained using the loss for diffusion models
introduced in (Ho et al., 2020):

Lsimple(θ) = Et,x0,ϵ[∥ϵ − ϵθ(
√
αtx0 +

√
1 − αtϵ︸                  ︷︷                  ︸

xt

, t,h)∥].

We calculate xt in closed form from x0, using the
reparametrization trick with the noise vector ϵ. The network
learns to minimize the Mean Squared Error between ϵ and the
output ϵ̂ = ϵθ(xt, t,h).

3.3. Zero-Centered Initialization
In generative diffusion models, the initial XT set during the

reverse process is sampled from N(0, 1). This noise is used
in standard image generation tasks to introduce stochasticity
for creating different images. However, since the solution in
positional reasoning represents the final arrangement, it should
only be influenced by the input features H and not by the initial
XT . Moreover, to guarantee a unique solution, it is essential
to ensure that all elements have an equal probability of being
moved to the correct positions without introducing initial noise
that could generate a different scenario from the correct one.
In this regard, the mean of the noise distribution is the optimal
starting position. We propose to set xT = 0 at the beginning
of the reverse process, and show the benefits of this solution
through extensive experiments and ablations (see Appendix).
We use zero-centered initialization throughout the experiments,
unless specified otherwise.

4. Experimental Evaluation

We evaluate Positional Diffusion on three tasks that require
positional reasoning on different dimensions and modalities: i)
puzzle solving operates with visual data to order the shuffled
image patches into a complete image in 2D; ii) sentence ordering
operates with textual data that aims to order the shuffled sen-
tences in 1D to form a complete and reasonable paragraph; and
iii) room rearrangement operates with objects’ bounding-boxes
and classes to re-arrange the objects of a messy room into the
most likely coherent configuration in a 2D floor plan. We report
additional details about the adopted datasets in the Appendix.
The following sections introduce the detailed experimental setup
for each task regarding the evaluation protocols, performance
metrics, and comparisons.

Throughout this section, tables report the best results in bold-
face and the second-best underlined.

4.1. Puzzle Solving

We follow the experimental setup in Ganzzle (Talon et al.,
2022) and report the results of Positional Diffusion in compari-
son to optimization-based and deep learning-based methods on
PuzzleCelebA, based on CelebA-HQ (Lee et al., 2020), and Puz-
zleWikiArts, based on WikiArts (Tan et al., 2019) (see Appendix
for more details). These two datasets feature many images,
allowing for method training with deep learning, while other
puzzle datasets typically only contain ≤ 100 images. For both
datasets, we test with puzzles of 6, 8, 10, and 12 squared size.
As the puzzle size increases, the problem becomes more diffi-
cult, as the permutations increase and each piece contains less
discriminative information.

The Appendix includes an extensive ablation study, qualitative
results, and additional experiments with missing pieces and
eroded patches.

Evaluation Metrics. We evaluate the performance of Positional
Diffusion using the Direct Comparison Metric (Cho et al., 2010),
an accuracy that indicates the number of correctly ordered pieces
over the full test set.

Implementation Details. As input an image is provided in n × n
patches, resulting a total of K = n2 elements. We divide a
2D target space with a range of (−1,−1), (1, 1) into a grid of
n × n cells. We use the centers of the cells as ground truth
positions X for the patches. The input data for puzzle solving
are the pixel values for each patch, resized to 32 × 32. We use
EfficientNet (Tan & Le, 2019) as the task-specific backbone to
extract the patch visual features hi and we train the diffusion
model with T = 300 and sample it with inference ratio r = 10.
Regarding the details of UniMP, we configure it with 4 stacked
graph attention layers, each employing 8 attention heads. We
train a single model with all puzzle sizes simultaneously. At
inference, we arrange the patches by mapping each estimated
patch position x̂i to a cell in the grid.

We measure the distance between each patch position and
cells’ centers and assign each patch to its closest cell, mapping
each cell to at most one patch. By using a greedy approach that
prioritizes the assignment between cell-patch pairs starting from
those with the lowest distance, the most confident prediction
will be assigned first, increasing the prediction robustness.
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Table 2: Results for sentence ordering compiled from Chowdhury et al. (2021). † Requires fine-tuning BART. ‡ Requires fine-tuning BERT.

METHOD
NeurIPS Abstract Wikipedia Movie Plots ROCStories

var. length, avg. 6 (max 15) var. length, avg. 13.5 (max 20) fixed length, avg. 5 (max 5)
Acc PMR τ Acc PMR τ Acc PMR τ

TGCM (Oh et al., 2019) 59.43 31.44 0.75 - - - - - -
RankTxNet‡ (Kumar et al., 2020) - 24.13 0.75 - - - - 38.02 0.76
B-TSort‡ (Prabhumoye et al., 2020) 61.48 32.59 0.81 - - - - - -
BERSON‡ (Cui et al., 2020) 73.87 48.01 0.85 - - - 82.86 68.23 0.88
BART (seq2seq)† (Chowdhury et al., 2021) 64.35 33.69 0.78 30.01 18.88 0.59 80.42 63.50 0.85
Re-BART† (Chowdhury et al., 2021) 77.41 57.03 0.89 42.04 25.76 0.77 90.78 81.88 0.94
Positional Diffusion w/o Diffusion Process 70.31 36.58 0.84 48.31 22.51 0.61 71.78 44.59 0.80
Positional Diffusion - N(0, 1) sampling 64.90 29.10 0.78 47.40 21.52 0.62 56.00 25.00 0.61
Positional Diffusion - Zero-centered initialization 74.44 45.24 0.85 50.41 25.00 0.63 75.12 54.80 0.82
Positional Diffusion - Zero-centered initialization w/ Re-BART backbone 71.12 39.31 0.85 52.15 29.38 0.69 80.11 59.95 0.86

Comparisons. We compared Positional Diffusion against a set
of SOTA methods for puzzle solving. Optimization meth-
ods (Paikin & Tal, 2015; Pomeranz et al., 2011; Gallagher, 2012)
are handcrafted methods for puzzle solving. They involve com-
puting a compatibility score between all pairs of pieces to predict
which are neighbors. PO-LA (Zhang et al., 2019) uses a neural
network to learn a differentiable permutation invariant ordering
cost between a set of patches. Ganzzle (Talon et al., 2022) em-
ploys a GAN to generate a hallucinated version of the full image
from the set of pieces and solves the puzzle as an assignment
problem with the Hungarian algorithm. Positional Diffusion w/o
Diffusion Process shares the same architecture with Positional
Diffusion but predicts the positions of each piece in one step.
We present two variants of Positional Diffusion, where one uses
the standard DPM random sampling from N(0, 1), and the other
uses the proposed zero-centered initialization for sampling.

Table 1 presents the results of all methods for solving puzzles
of various sizes with the two datasets. On PuzzleCelebA, both
the Positional Diffusion w/o Diffusion Process and Positional
Diffusion outperform the previous SOTA methods on almost
all puzzle sizes. In particular, Positional Diffusion scores the
new SOTA performance among learning-based methods on all
puzzle sizes, with a significant improvement against the previ-
ous best-performing method Ganzzle (Talon et al., 2022), even
outperforming classical optimization approaches.

PuzzleWikiArts contains puzzles that are harder to solve, as
they come from paintings with different pictorial styles and
subjects, with little common patterns. Nevertheless, Positional
Diffusion consistently obtains the best performance among all
methods, even outperforming the optimization-based methods,
which require hand-crafted features and greedy solutions, on all
puzzle sizes. Using the same trained model, Positional Diffusion
with the zero-centered initialization consistently obtains better
performance than using the standard DPM random sampling
from N(0, 1).

Since the Direct Comparison Metric is computed at the patch
level, it does not reflect the performance of solving a puzzle as
a whole. For example, the Positional Diffusion w/o Diffusion
Process positioned 75.84% patches correctly on PuzzleWikiArt
12 × 12, but it only solved 6.64% of the puzzles, while Posi-
tional Diffusion with 93.26% correctly positioned patches solved
69.32% of puzzles.

Computation analysis. We analyze the average computational
time for solving 6x6 puzzles across all methods and we re-
port results in Tab. 3. Positional Diffusion’s time requirements

are higher than the other deep-learning baselines when per-
forming 300 steps with an inference ratio of 10, while being
computationally advantageous with respect to optimization ap-
proaches. Positional Diffusion trades the additional computation
time for achieving state-of-the-art performances, outperforming
optimization based approaches.

Method Time (ms)

Optimization Based
Paikin and Tal 27.47
Pomeranz et al. 221.64
Gallagher 235.19

Learning Based

PO-LA 22.38
Hung-Perm 9.97
Ganzzle 25.16
Positional Diffusion 84.38

Table 3: Computation time for solving a 6x6 puzzle averaged over 24 samples

4.2. Sentence Ordering

For Sentence Ordering, we follow the experimental setup
in (Chowdhury et al., 2021) and report the results of all compared
methods on three common textual datasets (dataset statistics
are in the Appendix.): NeurIPS Abstract is obtained from the
abstracts of scientific articles featured at NeurIPS; Wikipedia
Movie Plots is a collection of plots of popular movies that are
available on Wikipedia; ROCStories is a collection of 5 sentences
stories regarding everyday events.

Evaluation Metrics. We quantify the sentence ordering perfor-
mances with three metrics as in (Chowdhury et al., 2021):
• Accuracy (Acc.) is the percentage of correctly predicted sen-

tence positions in an input text.
• Perfect Match Ratio (PMR) is the percentage of the number

of correctly ordered texts over the total number of texts in
the test set. Differently from Acc. which is calculated over
individual sentences, PMR measures if the full input text is
ordered correctly.

• Kendall’s Tau (τ) measures the correlation between the ground-
truth orders of sentences and the predicted ones, defined as:
τ = 1 − (2(#Inversions)

(
K
2

)−1
), where K is the number of

sentences in an input text, and #Inversions is the number of
discordant pairs.

We report the metrics averaged over the test set. Higher is better.
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Table 4: Experiment results on room rearrangement compiled from Wei et al. (2023).

Inference
Living Room Bedroom

Distance
Moved

↓ EMD
to GT

↓ % within
boundaries

↑ Distance
Moved

↓ EMD
to GT

↓ % within
boundaries

↑

ATISS (Paschalidou et al., 2021) failure-correction 0.1473 0.3378 - 0.2025 0.4673 -

Lego-net (Wei et al., 2023)
grad. w/ noise 0.091 0.125 54.20 0.052 0.086 84.20
grad. w/o noise 0.086 0.117 54.40 0.0492 0.0815 84.40

Positional Diffusion Tinfer = T = 1500 0.140 0.048 58.93 0.0781 0.0683 85.31
Tinfer = 100 0.086 0.037 59.38 0.066 0.055 89.01

Implementation Details. We divide a text into a variable num-
ber K sentences with shuffled orders as the input. To assign
the correct positions x0 to each sentence, we evenly sample K
positions over the interval (−1, 1), and assigned them to the di-
vided sentences based on their position in the text. The starting
sentence will have the smallest position, while the ending sen-
tence will have the largest position. We use a frozen pre-trained
BART (Lewis et al., 2020) language model for our task-specific
feature backbone, to which we added a learnable transformer
encoder layer at the end. For each sentence, we prepend a ⟨bos⟩
token and pass the sentence to BART to obtain the token fea-
ture as the task-specific feature hi in Positional Diffusion. We
train our method with T = 300 and sample with inference ratio
r = 10. The architecture configuration remains consistent with
that reported for the puzzle solving task.

Comparisons. We conducted a comprehensive evaluation of
Positional Diffusion against the current best-performing meth-
ods BERSON (Cui et al., 2020), Re-BART (Chowdhury et al.,
2021), and BART for seq2seq generation as proposed in (Chowd-
hury et al., 2021), as well as other baselines including B-
TSort (Prabhumoye et al., 2020), RankTxNet (Kumar et al.,
2020), TGCM (Oh et al., 2019). We also provide the results
of Positional Diffusion w/o Diffusion Process, which shares the
same architecture of Positional Diffusion but directly predicts
the final order in a single step.

We report the results in Table 2.
Wikipedia Movie Plots has the largest average number of sen-

tences in a paragraph, which is more than double compared
to that of NeurIPS Abstract and On ROCStories. Positional
Diffusion scores the best Accuracy on Wikipedia Movie Plots,
with an improvement of +8% over the current SOTA method
Re-BART, with on par performance in terms of PMR and τ.
With NeurIPS Abstract, Positional Diffusion is the second-best
method in Accuracy and τ, while Re-BART remains the best-
performing one. It is important to note that we use frozen BART
to extract the word embedding for a single sentence, and then
use a learnable two-layer transformer to convert the word em-
bedding to a single sentence embedding that we use as a node
feature to train our GNN model for positional reasoning. Instead,
Re-BART (Chowdhury et al., 2021) fine-tunes BART with all
sentences simultaneously to predict the sequence order. In fact,
the trainable parameters of Positional Diffusion is 32M for text
ordering, which is negligible compared to Re-BART’s 425M.

On ROCStories, Positional Diffusion performs worse than
BEARSON and Re-BART. Compared to the well-structured
texts in NeurIPS Abstract and Wikipedia Movie Plots, the logical

connection among sentences in ROCStories is weak in some
cases, which we credit it as the main reason for the poorer
performance of Positional Diffusion.

We further explore adopting Positional Diffusion with Re-
BART backbone. Re-BART improves Positional Diffusion over
ROCStories and Wikipedia Movie Plots across all metrics, while
BART backbone still outperforms on NeurIPS Abstract.

Re-BART fine-tunes BART by concatenating the input sen-
tences and computing features for the entire paragraph, that
are later fed to a decoder that predicts the correct order. On
the other hand, our method builds a graph where each node
represents sentence to order. Node features are extracted via a
text feature-encoder that is fed with individual sentences, which
makes Re-BART less ideal as it requires full paragraph as input.

Finally, we highlight a trend that was already evident for Jig-
saw Puzzles: Positional Diffusion generally excels on ordering
big sets with higher variability, such as sentences for NeurIPS
abstract and Wikipedia Movie Plots, or 12 × 12 Wikiart puzzles.

4.3. Room Rearrangement

We evaluate Positional Diffusionon rearranging objects in
coherent positions in 2D space. We adopt the experimental setup
in (Wei et al., 2023) and report results on professionally-arranged
living rooms and bedrooms from the 3D-Front dataset (Fu et al.,
2021). Contrarily to jigsaw puzzles, objects in a room may be
correctly placed in multiple valid positions (e.g., a chair may be
appropriately positioned around any table in the room). Wei et al.
initialized the objects’ locations slightly off the correct ones at
testing, and then consider that only the acceptable configuration
closest to the ground-truth is correct.

Evaluation metrics. We quantify the room rearrangement per-
formances with two metrics as in (Wei et al., 2023):
• Distance moved: distance between starting (noisy) and final

(rearranged) positions of the objects in the scene;
• Earth moving distance to ground-truth (EMD to GT): earth

moving distance between rearranged objects’ location and
ground-truth;

• % scenes with objects within boundaries: Percentage of de-
noised scenes with at least 90% of its furniture within the floor
plan boundaries;

Implementation Details. For each object in scene, we represent
its (x, y) position in bird’s-eye view and orientation θ as a vector
x = [x, y, cos θ, sin θ]. As input, we pass, as node features, the x
vector, the object’s class and the 2D bounding-boxes.
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TASK
Position Data Feature Trainable Parameters

Dim. Modality Backbone(s) Backbone GNN
Puzzle solving 2D RGB EfficientNet (Tan & Le, 2019) 6.8 M

3.2 M
Sentences ordering 1D Text BART (Lewis et al., 2020) 28.2 M†

Room Rearrangement 2D
Room layout PointNet (Qi et al., 2017) 1.22 M& Obj. class/bbox & Embedding layers

Table 5: Overview of the experimental settings. †We report the parameters of the trainable Transformer built on top of the frozen BART model (425 M).

Furthermore, we encode the room layout with PointNet (Qi
et al., 2017) following (Wei et al., 2023) and include it as an
additional node in the input graph. At training, we add Gaus-
sian noise (forward pass) with T = 1500 and train Positional
Diffusion to predict the initial position and orientation of every
object. At inference, we follow (Wei et al., 2023) and initial-
ize objects by adding Gaussian noise N(0, 0.1) to ground-truth
positions, and we reverse the noise with Positional Diffusion.
We take inspiration from (Zheng, 2022) and propose to start the
de-noising process from timestep Tinfer much lower than T to
account for the difference between training and test distributions
of the object positions.

Comparisons. We compare Positional Diffusion with
ATISS (Paschalidou et al., 2021) and Lego-net (Wei et al., 2023).
ATISS differs from its original implementation and performs
failure-correction by iteratively re-positioning objects with low
probability in a scene.

Lego-net iteratively de-noises the starting object positions
(w/o noise). A variant of Lego-net (w/noise) adds a small noise
at every iteration. (Wei et al., 2023) used fixed-variance Gaus-
sian noise at training while injecting time-dependent noise at
inference. This strategy is fundamentally different from diffu-
sion models. (Ho et al., 2020) shows that time-dependent noise
injection at training is an essential characteristic of diffusion
and score-based generative models that sets them apart from
traditional denoising techniques.

Table 4 shows that Positional Diffusion outperforms the base-
lines on the living room dataset. In particular, our approach
greatly reduces the EMD to GT by 70% on living room with
respect to Lego-net, while maintaining distance moved for the
object low. On bedrooms, our method outperforms the baselines
on EMD to GT while maintaining a low average distance for ob-
jects. A coherent room should have feasible positions of objects,
e.g., inside its boundaries. We compare our approach to the
Lego-net on the % of scenes with objects within boundaries. The
results show that Positional Diffusion consistently outperforms
Lego-net in locating objects within rooms.

We initialize the inference process from a much lower
timestep Tinfer and compare truncated inference at Tinfer = 100
to full inference at T = 1500. Truncating the diffusion process
improves living room and bedroom results while reducing the
number of inference steps by 90%.

4.4. Experiment Details

Hardware. The experiments were conducted on a computer with
2 NVIDIA Tesla V100 16GB, 380 GB RAM, and 2x Intel(R)

Xeon(R) Silver 4210 CPU @ 2.20GHz Sky Lake CPU.

Model Settings. We train Positional Diffusion with a learning
rate of 10−4 and employ Adagrad as the optimization algo-
rithm (Duchi et al., 2011). We set a maximum of 1000 epochs
during our training process, but we stop the training earlier to
prevent unnecessary iterations when the loss no longer decreases.

Table 5 shows the different dimensionality, modality, and
number of parameters for each of our downstream tasks. It
is worth noting that our Positional Diffusion shares the same
structure across all tasks.

Due to limited computational resources and the high cost
associated with the various tasks, we could not rerun our model
with multiple seeds.

5. Conclusion

In this work, we proposed Positional Diffusion, a graph-based
DPM for positional reasoning on unordered sets. Positional
Diffusion represents the set as a fully connected graph where
each element is a node of the graph. By using an Attention-
based GNN, we update the node features to estimate the node
position. The diffusion formulation allows us to learn the under-
lying patterns and iteratively refine the element positions. As
demonstrated in the experimental section, Positional Diffusion
is generic and applicable to multiple tasks that require posi-
tional reasoning regardless of the data modality and positional
dimension. We experimented with three ordering tasks: puzzle
solving, sentence ordering, and room rearrangement. Positional
Diffusion reaches SOTA on puzzle solving–outperforming long-
lasting optimization methods while being computationally ef-
ficient, outperforms previous methods on room rearrangement,
and achieves comparable results on sentence ordering on par
with methods specifically designed for the task. Furthermore,
Positional Diffusion outperforms previous methods when inject-
ing noise in puzzle solving tasks, demonstrating robustness and
generalization to unseen scenarios.

Limitations and Future Work. Our experiments highlighted
some of the limitations of Positional Diffusion. Adopting the
diffusion-based formulation improves performances across all
tasks and datasets but introduces a computational overhead due
to the iterative diffusion process. Furthermore, Positional Dif-
fusion learns a distribution of element positions conditioned on
the inputs. While task-specific approaches work well for smaller
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set of elements (e.g., 6x6 puzzles, ROCStories 5-sentence para-
graphs), Positional Diffusion shines for more complex distribu-
tion, e.g., for 12x12 puzzles and Wikipedia 20-sentence para-
graphs. While Positional Diffusion is easy to apply, it needs to
be trained per task.

In future work, our aim is to strengthen the generalization
capability by training a single foundation model to address po-
sitional reasoning across multiple modalities and tasks. We
will explore graph formulations with dynamic connectivity to
mitigate this limitation.
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